derm-ai
This model is a fine-tuned version of unsloth/medgemma-4b-it-unsloth-bnb-4bit on the imagefolder dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.0633
- eval_runtime: 87.8654
- eval_samples_per_second: 1.138
- eval_steps_per_second: 0.569
- epoch: 0.4048
- step: 110
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
- mixed_precision_training: Native AMP
Framework versions
- PEFT 0.16.0
- Transformers 4.57.1
- Pytorch 2.6.0+cu124
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 3
Model tree for yloa/derm-ai
Base model
google/gemma-3-4b-pt
Finetuned
google/medgemma-4b-pt
Finetuned
google/medgemma-4b-it
Quantized
unsloth/medgemma-4b-it-unsloth-bnb-4bit