Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| non_math |
|
| math |
|
| Label | Accuracy |
|---|---|
| all | 1.0 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("serdarcaglar/primary-school-math-question-multi-lang")
# Run inference
preds = model("Bir üçgenin tabanı 12 cm, yüksekliği 8 cm'dir. Üçgenin alanı kaç cm²'dir?")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 10.3435 | 33 |
| Label | Training Sample Count |
|---|---|
| math | 459 |
| non_math | 129 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0007 | 1 | 0.1982 | - |
| 0.0340 | 50 | 0.1009 | - |
| 0.0680 | 100 | 0.0054 | - |
| 0.1020 | 150 | 0.002 | - |
| 0.1361 | 200 | 0.001 | - |
| 0.1701 | 250 | 0.0023 | - |
| 0.2041 | 300 | 0.0002 | - |
| 0.2381 | 350 | 0.0013 | - |
| 0.2721 | 400 | 0.0004 | - |
| 0.3061 | 450 | 0.0004 | - |
| 0.3401 | 500 | 0.0002 | - |
| 0.3741 | 550 | 0.0001 | - |
| 0.4082 | 600 | 0.0001 | - |
| 0.4422 | 650 | 0.0002 | - |
| 0.4762 | 700 | 0.0001 | - |
| 0.5102 | 750 | 0.0001 | - |
| 0.5442 | 800 | 0.0002 | - |
| 0.5782 | 850 | 0.0002 | - |
| 0.6122 | 900 | 0.0001 | - |
| 0.6463 | 950 | 0.0005 | - |
| 0.6803 | 1000 | 0.0001 | - |
| 0.7143 | 1050 | 0.0001 | - |
| 0.7483 | 1100 | 0.0001 | - |
| 0.7823 | 1150 | 0.0001 | - |
| 0.8163 | 1200 | 0.0001 | - |
| 0.8503 | 1250 | 0.0001 | - |
| 0.8844 | 1300 | 0.0 | - |
| 0.9184 | 1350 | 0.0002 | - |
| 0.9524 | 1400 | 0.0001 | - |
| 0.9864 | 1450 | 0.0001 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}