QA-DeBERTa-v3-large-focal-binary
This model is a fine-tuned version of microsoft/deberta-v3-large on the saiteki-kai/Beavertails-it dataset. It achieves the following results on the evaluation set:
- Loss: 0.0614
- Accuracy: 0.8630
- Unsafe Precision: 0.8774
- Unsafe Recall: 0.8763
- Unsafe F1: 0.8768
- Unsafe Fpr: 0.1537
- Unsafe Aucpr: 0.9565
- Safe Precision: 0.8450
- Safe Recall: 0.8463
- Safe F1: 0.8457
- Safe Fpr: 0.1237
- Safe Aucpr: 0.9246
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-06
- train_batch_size: 64
- eval_batch_size: 512
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Unsafe Precision | Unsafe Recall | Unsafe F1 | Unsafe Fpr | Unsafe Aucpr | Safe Precision | Safe Recall | Safe F1 | Safe Fpr | Safe Aucpr |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0696 | 0.2501 | 2114 | 0.0675 | 0.8505 | 0.8844 | 0.8414 | 0.8623 | 0.1380 | 0.9455 | 0.8124 | 0.8620 | 0.8365 | 0.1586 | 0.9023 |
| 0.0582 | 0.5001 | 4228 | 0.0652 | 0.8554 | 0.8613 | 0.8821 | 0.8716 | 0.1781 | 0.9515 | 0.8474 | 0.8219 | 0.8344 | 0.1179 | 0.9129 |
| 0.066 | 0.7502 | 6342 | 0.0645 | 0.8596 | 0.8913 | 0.8516 | 0.8710 | 0.1304 | 0.9528 | 0.8237 | 0.8696 | 0.8460 | 0.1484 | 0.9159 |
| 0.0652 | 1.0002 | 8456 | 0.0622 | 0.8595 | 0.8652 | 0.8856 | 0.8752 | 0.1732 | 0.9541 | 0.8521 | 0.8268 | 0.8393 | 0.1144 | 0.9188 |
| 0.0596 | 1.2503 | 10570 | 0.0647 | 0.8602 | 0.8885 | 0.8562 | 0.8721 | 0.1348 | 0.9544 | 0.8274 | 0.8652 | 0.8459 | 0.1438 | 0.9196 |
| 0.0599 | 1.5004 | 12684 | 0.0618 | 0.8599 | 0.8765 | 0.8711 | 0.8738 | 0.1540 | 0.9543 | 0.8395 | 0.8460 | 0.8427 | 0.1289 | 0.9203 |
| 0.0558 | 1.7504 | 14798 | 0.0607 | 0.8623 | 0.8835 | 0.8669 | 0.8751 | 0.1435 | 0.9560 | 0.8368 | 0.8565 | 0.8466 | 0.1331 | 0.9234 |
| 0.0563 | 2.0005 | 16912 | 0.0614 | 0.8630 | 0.8773 | 0.8763 | 0.8768 | 0.1537 | 0.9565 | 0.8450 | 0.8463 | 0.8457 | 0.1237 | 0.9246 |
| 0.0513 | 2.2505 | 19026 | 0.0629 | 0.8609 | 0.8906 | 0.8550 | 0.8725 | 0.1317 | 0.9556 | 0.8268 | 0.8683 | 0.8470 | 0.1450 | 0.9224 |
| 0.0517 | 2.5006 | 21140 | 0.0641 | 0.8591 | 0.9018 | 0.8380 | 0.8688 | 0.1144 | 0.9555 | 0.8134 | 0.8856 | 0.8479 | 0.1620 | 0.9232 |
| 0.0532 | 2.7507 | 23254 | 0.0649 | 0.8611 | 0.9003 | 0.8439 | 0.8712 | 0.1172 | 0.9563 | 0.8184 | 0.8828 | 0.8494 | 0.1561 | 0.9243 |
| 0.0555 | 3.0007 | 25368 | 0.0630 | 0.8622 | 0.8810 | 0.8698 | 0.8754 | 0.1475 | 0.9565 | 0.8392 | 0.8525 | 0.8458 | 0.1302 | 0.9253 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.7.1+cu118
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 4
Model tree for saiteki-kai/QA-DeBERTa-v3-large-focal-binary
Base model
microsoft/deberta-v3-largeEvaluation results
- Accuracy on saiteki-kai/Beavertails-itself-reported0.863