AI & ML interests

None defined yet.

Recent Activity

Sri-Vigneshwar-DJ 
posted an update 12 days ago
view post
Post
1372
Just released a new dataset designed for training reasoning models on Meta (Facebook/Instagram) advertising fatigue detection!

What is it? A GRPO (Group Relative Policy Optimization) training dataset with 200+ carefully crafted scenarios covering:

🔍 Fatigue Signal Detection: CTR drops, CPM spikes, frequency analysis
🩺 Performance Diagnosis: Root cause analysis frameworks
📋 Strategy: Creative refresh cadence, testing frameworks
📊 Analysis: ROI calculations, metric interpretation
Why GRPO? GRPO training helps models learn structured reasoning. Each response follows the <thinking> and <answer> format.

Check it out here: Sri-Vigneshwar-DJ/meta-fatigue-grpo-dataset
Ccloud0525 
published a model 20 days ago
Sri-Vigneshwar-DJ 
posted an update 21 days ago
view post
Post
207
🏙️ Hugging Face Community Post
Title: 🧬 Experimenting with "Dynamic Chaos" in Tamil SLMs

Hi everyone! I just published a new experimental study on Small Language Model (SLM) resilience.

I took the Qwen2.5-0.5B model and put it through a "Chaos Phase" to see how much weight data a tiny model can lose before its understanding of classical Tamil grammar breaks.

Key highlights of the study:

Target Data: Fine-tuned on the Thirukkural (1,330 couplets + modern explanations).
The Chaos Step: Applied 20% random weight pruning but implemented "Layer Protection" for the Token Embeddings and LM Head to keep the characters readable.
Compression: 4-bit (Q4_K_M) quantization for extreme efficiency.
Result: A surrealist classical Tamil model that is ultra-light (~300MB) and ultra-fast!

Check out the model and the experiment logic here: Sri-Vigneshwar-DJ/qwen-tamil-chaos-v1
Sri-Vigneshwar-DJ 
posted an update 29 days ago
view post
Post
310
Performance Marketing meets "Thinking Mode" 🧠

I’m excited to release hawky-ai-Qwen3-0.6B-Marketing-MoT, a specialized SLM designed for deep strategic reasoning in performance marketing.

While small at 0.6B parameters, this model punches way above its weight class by utilizing a Mixture of Thoughts (MoT) framework. It doesn't just give you an answer; it thinks through the logic of Meta Ads scaling, GA4 attribution, and unit economics before providing a strategic recommendation.

Key Features:

Thinking-First: Trained on 1,500+ critical thinking scenarios.
MoT Framework: 5 distinct reasoning styles (Linear, Exploratory, Critical, Deconstructive, Analogical).
SLM Speed: Perfect for low-latency, high-precision marketing audits.
Check it out on Hugging Face: 🔗 Sri-Vigneshwar-DJ/hawky-ai-Qwen3-0.6B-Marketing-MoT
Sri-Vigneshwar-DJ 
posted an update about 1 month ago
view post
Post
2186
Introducing Hawky-AI H1 4B PM: The First Open-Source LLM for Performance Marketing 🎯

Hey HF Community! 👋

Just released the first LLM fine-tuned specifically for Performance Marketing.
What is it?
Gemma 3 4B distilled from Claude Opus 4.5 with expert-level marketing knowledge.
Covers:
📱 Meta Ads (campaign structure, bidding, scaling, creative fatigue)
🔍 Google Ads (Quality Score, Performance Max, lead gen)
📊 Measurement (ROAS vs MER, incrementality, LTV:CAC)
🎨 Creative Strategy (hook rates, A/B testing, funnel creative)
Why we built it:
Generic LLMs say "optimize your targeting" — not helpful. This model gives specific frameworks like "frequency at 4.5 + CTR drop = creative fatigue, here's the fix..."
Technical:

Base: Gemma 3 4B
Method: QLoRA (r=64)
Teacher: Claude Opus 4.5

🔗 Model: Sri-Vigneshwar-DJ/hawky-ai-H1-4b-PM
Built by Hawky.ai

Try it and let us know what you think! 🚀
Sri-Vigneshwar-DJ 
posted an update about 1 month ago
view post
Post
1384
🦅 Introducing Hawky AI H1 Mini 4B: A Domain-Specific Model for Performance Marketing

Hey HuggingFace community! 👋

We're excited to share our first open-source release: **Hawky AI H1 Mini 4B Experimental** - a Gemma 3 4B model fine-tuned specifically for Meta advertising and performance marketing strategy.

🎯 Why We Built This

At [Hawky.ai](https://hawky.ai), we build AI-powered creative intelligence tools for performance marketers. We work with major agencies (WPP, Madison, GroupM) and brands (TVS Motors, Tanishq, Bajaj Finserv) on campaign optimization.

We wanted to explore: Can a small, domain-specific model provide expert-level guidance on performance marketing?

Specifically, we focused on Meta's Andromeda algorithm - the AI system that now powers ad delivery across Facebook and Instagram. Understanding Andromeda is crucial for modern media buying, but the knowledge is scattered and constantly evolving.

🧠 What Makes This Different

Chain-of-Thought Reasoning
The model doesn't just answer - it **thinks through problems** step-by-step:

Sri-Vigneshwar-DJ/hawky-ai-h1-mini-4b-experimental
Sri-Vigneshwar-DJ 
posted an update about 1 month ago
view post
Post
937
Domain-specific reasoning is crucial when working with big-budget campaigns on Meta. That's why we've launched an experimental Chain-of-Thought (CoT) reasoning model for critical thinking, tailored to Meta's Andromeda algorithm-based campaign structuring and optimization.

Sri-Vigneshwar-DJ/hawky-ai-h1-mini-1b-experimental
Sri-Vigneshwar-DJ 
posted an update about 1 month ago
view post
Post
2973
The recent update to Meta's ad algorithm is very difficult to crack, and even the latest models struggle to keep up with it. To address this, we've created a small experimental dataset for fine-tuning models to better tackle Meta's Andromeda algorithm: Sri-Vigneshwar-DJ/hawky-ai-andromeda-dataset
Sri-Vigneshwar-DJ 
posted an update about 2 months ago
ContemplatorFRC 
updated a Space 3 months ago
Sri-Vigneshwar-DJ 
posted an update 4 months ago
view post
Post
354
Do you think domain-specific embedding fine-tuners are needed?
I've been working with embeddings for marketing use cases and noticed something: most embeddings don't get marketing concepts very well. They're trained in general-purpose ways.
The Issue I'm Seeing
When I search marketing content with general embeddings:

"organic growth" returns farming articles
"conversion funnel" matches industrial equipment
"brand lift" doesn't connect to campaign effectiveness
Marketing jargon like CAC, ROAS, CTR aren't properly understood

My Question
Do you think domain-specific embeddings are needed for marketing?
Some thoughts:

Marketing has its own vocabulary and concept relationships
General models trained on Wikipedia/web crawl miss these nuances
But is fine-tuning worth the effort vs just using more retrieval tricks?

Quick Example
I fine-tuned all-mpnet-base-v2 on ~1000 marketing concept pairs and saw 15-20% better retrieval accuracy. But I'm curious:

Has anyone else tried this for marketing or other domains?
When do you think domain-specific embeddings are actually necessary vs overkill?
Are there better approaches I'm missing?

https://huggingface.co/blog/Sri-Vigneshwar-DJ/why-your-marketing-rag-system-needs-domain-specifi
  • 6 replies
·