Static Embeddings with BERTino uncased tokenizer finetuned on a subset of MMARCO
This is a sentence-transformers model trained on the mmarco dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: inf tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): StaticEmbedding(
(embedding): EmbeddingBag(31102, 1024, mode='mean')
)
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("nickprock/static-similarity-mmarco3m-mrl-BERTino-v1.5")
sentences = [
"di quale sistema fa parte l'insulina?",
'Come i nostri nervi regolano la secrezione di insulina. LA STORIA COMPLETA. Il sistema nervoso autonomo, che è la parte del sistema nervoso al di fuori del controllo cosciente, svolge un ruolo importante nel rilascio di insulina dalle cellule beta nella parte endocrina del pancreas.',
"1 Arrotolare il flacone di insulina tra le mani due o tre volte per miscelare l'insulina. 2 Non agitare il flacone, poiché possono formarsi bolle d'aria che influiscono sulla quantità di insulina prelevata. 3 Pulire la parte in gomma sulla parte superiore del flacone di insulina con un tampone imbevuto di alcol o un batuffolo di cotone inumidito con alcol.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Triplet
| Metric |
mmarco_dev |
mmarco_test |
| cosine_accuracy |
0.9816 |
0.9785 |
Training Details
Training Dataset
mmarco
- Dataset: mmarco
- Size: 39,780,811 training samples
- Columns:
query, positive, and negative
- Approximate statistics based on the first 1000 samples:
|
query |
positive |
negative |
| type |
string |
string |
string |
| details |
- min: 10 characters
- mean: 38.84 characters
- max: 112 characters
|
- min: 92 characters
- mean: 400.26 characters
- max: 1273 characters
|
- min: 76 characters
- mean: 383.85 characters
- max: 1071 characters
|
- Samples:
| query |
positive |
negative |
è un certificato di nascita uguale a un certificato di naturalizzazione |
No. Un certificato di nascita viene rilasciato dopo la nascita, di solito nella città e nello stato in cui è avvenuta la nascita. La nascita di Barack Obama è stata registrata a Honolulu, nelle Hawaii, per esempio. |
La modifica non può essere effettuata tramite posta. Per trovare l'ufficio più vicino, vedere Office Locator. Quando visiti l'ufficio dell'amministrazione della sicurezza sociale, devi portare una prova della cittadinanza statunitense come il certificato di naturalizzazione o il passaporto statunitense e qualche altra forma di documento d'identità con foto come la patente di guida. Il cambio non può essere effettuato per posta. Per trovare l'ufficio più vicino, vedere Office Locator. Quando visiti l'ufficio dell'amministrazione della sicurezza sociale, devi portare una prova della cittadinanza statunitense come il certificato di naturalizzazione o il passaporto statunitense e qualche altra forma di documento d'identità con foto come la patente di guida. |
il latte è consentito nella dieta della pancia di grano? |
Se perdi peso con la dieta della pancia di grano, probabilmente sarà per aver fatto scelte alimentari sane e non perché hai evitato il glutine. Non ci sono prove scientifiche che gli alimenti con glutine causino un aumento di peso maggiore rispetto ad altri alimenti. Ma la dieta della pancia di grano non elimina solo il glutine. Vieta anche tutta una serie di altri alimenti, tra cui sciroppo di mais ad alto contenuto di fruttosio, saccarosio, cibi zuccherati, riso, patate, soda, succhi di frutta, frutta secca e legumi. Eliminare il sale è ottimo per la pressione sanguigna. Ma se hai il colesterolo alto o malattie cardiache, potresti voler evitare i latticini ricchi di grassi e la carne rossa che sono consentiti nella dieta della pancia di grano. Davis incoraggia l'esercizio, ma il tipo e la quantità effettivi sono lasciati a te. |
Rasmalai. Ingredienti: Latte, zucchero, ingredienti del latte modificato, farina di frumento, pistacchi, acido citrico, acido acetico, cloruro di calcio, sorbato di potassio, fecola di patate modificata, gomma di guar, gomma di xantano e aromi.Fatti: ingredienti: latte, zucchero, latte modificato ingredienti, farina di frumento, pistacchi, acido citrico, acido acetico, cloruro di calcio, sorbato di potassio, fecola di patate modificata, gomma di guar, gomma di xantano e aromi. Fatti: |
qual è stata la logica alla base della politica di pacificazione durante la seconda guerra mondiale? |
La politica di pacificazione come motivo più importante dello scoppio della seconda guerra mondiale. Lo scoppio della seconda guerra mondiale ebbe molte cause, una delle quali fu. la politica di pacificazione che fu una delle cause più importanti. La politica di pacificazione, tra il 1936 â€â†1939 era la politica di. cedendo alle richieste di Hitler di prevenire un altro conflitto. Questo era un. una delle maggiori cause della seconda guerra mondiale come Gran Bretagna e Francia. avrebbe potuto fermare Hitler molto prima, per esempio l'invasione di. |
Razionale per la politica sulla valutazione delle prestazioni. La valutazione delle prestazioni può essere vista come il processo di valutazione e registrazione delle prestazioni del personale allo scopo di esprimere giudizi sul personale che portano a decisioni. |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
mmarco
- Dataset: mmarco
- Size: 39,780,811 evaluation samples
- Columns:
query, positive, and negative
- Approximate statistics based on the first 1000 samples:
|
query |
positive |
negative |
| type |
string |
string |
string |
| details |
- min: 11 characters
- mean: 39.1 characters
- max: 194 characters
|
- min: 71 characters
- mean: 392.09 characters
- max: 1089 characters
|
- min: 65 characters
- mean: 372.69 characters
- max: 1060 characters
|
- Samples:
| query |
positive |
negative |
che colpa c'è in turchia? |
Il terremoto in Turchia rivela una nuova zona di faglia attiva di Wendy Zukerman Un terremoto di magnitudo 7.2 ha colpito ieri la Turchia, uccidendo più di 200 persone e ferendone migliaia. La Turchia è uno dei paesi più terremotati al mondo. La maggior parte si trova sulla placca anatolica, una piccola placca tettonica a forma di cuneo che viene schiacciata verso ovest mentre la placca araba a est si scontra con la placca eurasiatica. |
Leggi e regolamenti sull'assicurazione auto senza colpa della Florida. La Florida segue senza colpa quando si tratta del pagamento dei sinistri dell'assicurazione auto dopo un incidente d'auto. In uno stato senza colpa, i conducenti sono tenuti a portare un'assicurazione auto che paga la protezione contro le lesioni personali, o PIP, benefici. |
significato del nome olivia |
15 Terribili significati del nome del bambino. Olivia. La storia: Olivia è stata usata per la prima volta come nome femminile nella dodicesima notte di Shakespeare. Mentre secondo l'interpretazione latina significa semplicemente ramo d'ulivo, Olivia è anche conosciuta come una versione femminile di Oliver che significa, sì, esercito di elfi. |
Olivia Munn ha lavorato senza sforzo sulle onde da spiaggia strutturate sul braccio di Aaron Rodgers agli ESPYs 2016 a Los Angeles mercoledì 13 luglio. Alberto E. Rodriguez/Getty. In una parola, impeccabile! Olivia Munn ha calcato il tappeto rosso agli ESPYs 2016 mercoledì 13 luglio a Los Angeles, lavorando sulle onde da spiaggia più voluminose e strutturate. Continua a leggere per i dettagli su come ricreare lo stile! Questo look è grintoso ma senza sforzo - [è] tutto basato sulla consistenza, ha detto a Us Weekly l'hairstylist delle celebrità Chris Appleton. |
a cosa servono i carboidrati? |
Scopri quali buoni carboidrati aggiungere alla tua dieta per perdere peso. Non sono mai stato un fan delle diete a basso contenuto di carboidrati: il nostro corpo e il nostro cervello hanno bisogno di carboidrati per funzionare in modo efficace. Scopri quali carboidrati buoni aggiungere alla tua dieta per perdere peso. Non sono mai stato un fan delle diete a basso contenuto di carboidrati: il nostro corpo e il nostro cervello hanno bisogno di carboidrati per funzionare in modo efficace. |
L'elenco di carboidrati sani di seguito è la migliore fonte di carboidrati buoni. La scelta di carboidrati cattivi (anziché da questo elenco di carboidrati buoni) può minare rapidamente la tua salute e sabotare i tuoi obiettivi di gestione del peso. |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 2048
per_device_eval_batch_size: 2048
learning_rate: 0.2
num_train_epochs: 1
warmup_ratio: 0.1
bf16: True
load_best_model_at_end: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 2048
per_device_eval_batch_size: 2048
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 0.2
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size: 0
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
mmarco_dev_cosine_accuracy |
mmarco_test_cosine_accuracy |
| -1 |
-1 |
- |
- |
0.7382 |
- |
| 0.0007 |
1 |
42.3016 |
- |
- |
- |
| 0.0683 |
100 |
20.914 |
8.5389 |
0.9048 |
- |
| 0.1365 |
200 |
7.612 |
5.6560 |
0.9345 |
- |
| 0.2048 |
300 |
5.4857 |
4.3568 |
0.9503 |
- |
| 0.2730 |
400 |
4.374 |
3.5553 |
0.9593 |
- |
| 0.3413 |
500 |
3.7164 |
3.0826 |
0.9664 |
- |
| 0.4096 |
600 |
3.2707 |
2.7282 |
0.9719 |
- |
| 0.4778 |
700 |
2.9356 |
2.5033 |
0.9742 |
- |
| 0.5461 |
800 |
2.6984 |
2.3172 |
0.9781 |
- |
| 0.6143 |
900 |
2.5414 |
2.1870 |
0.9797 |
- |
| 0.6826 |
1000 |
2.3811 |
2.0797 |
0.9804 |
- |
| 0.7509 |
1100 |
2.273 |
1.9936 |
0.9816 |
- |
| -1 |
-1 |
- |
- |
- |
0.9785 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.50.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}