wav2vec2-xls-r-300m-pt-500h-FO-500h-IS-cp14-faroese-100h-30-epochs_run9_2025-09-10

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0987
  • Wer: 18.6853
  • Cer: 3.9908

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.2979 0.4877 1000 3.2300 100.0 99.2291
0.7248 0.9754 2000 0.4206 39.0933 10.3811
0.3723 1.4628 3000 0.2100 29.3695 7.3497
0.329 1.9505 4000 0.1888 27.7261 6.8250
0.272 2.4379 5000 0.1598 26.2061 6.2687
0.2413 2.9256 6000 0.1445 25.4042 6.0652
0.1809 3.4131 7000 0.1366 24.2543 5.7535
0.1936 3.9008 8000 0.1321 24.0472 5.6091
0.1516 4.3882 9000 0.1344 23.5053 5.4742
0.1724 4.8759 10000 0.1288 23.2410 5.4553
0.139 5.3633 11000 0.1289 22.8885 5.2951
0.1445 5.8510 12000 0.1243 22.9414 5.2691
0.1201 6.3385 13000 0.1193 22.6329 5.2115
0.1291 6.8261 14000 0.1154 22.1527 5.0631
0.1021 7.3136 15000 0.1118 21.6328 4.9156
0.1081 7.8013 16000 0.1145 21.8575 5.0008
0.1032 8.2887 17000 0.1118 21.4390 4.8651
0.1073 8.7764 18000 0.1098 21.1350 4.7972
0.0872 9.2638 19000 0.1119 21.1438 4.8130
0.0997 9.7515 20000 0.1031 20.8706 4.7120
0.0817 10.2390 21000 0.1086 20.7384 4.6718
0.081 10.7267 22000 0.1050 20.9147 4.6828
0.0674 11.2141 23000 0.1103 20.6371 4.6386
0.0727 11.7018 24000 0.1119 20.6459 4.6284
0.0711 12.1892 25000 0.1059 20.4520 4.5676
0.068 12.6769 26000 0.1027 20.3507 4.4958
0.0654 13.1644 27000 0.1030 20.3375 4.5274
0.064 13.6520 28000 0.1066 20.4564 4.5282
0.0645 14.1395 29000 0.1056 20.3066 4.4974
0.0729 14.6272 30000 0.1016 19.9366 4.4059
0.053 15.1146 31000 0.1083 19.7956 4.3356
0.0534 15.6023 32000 0.1051 19.7779 4.3467
0.058 16.0897 33000 0.1060 19.7471 4.3285
0.0582 16.5774 34000 0.1034 19.7559 4.3104
0.046 17.0649 35000 0.1052 19.7383 4.2938
0.0433 17.5525 36000 0.0995 19.7163 4.2836
0.0503 18.0400 37000 0.1001 19.5488 4.2252
0.0407 18.5277 38000 0.0991 19.5841 4.2378
0.0443 19.0151 39000 0.0979 19.4563 4.1834
0.0443 19.5028 40000 0.1061 19.3374 4.2228
0.0412 19.9905 41000 0.1016 19.2801 4.1849
0.0426 20.4779 42000 0.1036 19.3109 4.2039
0.0332 20.9656 43000 0.1027 19.0598 4.1242
0.0348 21.4531 44000 0.0988 19.1083 4.1210
0.0505 21.9407 45000 0.0978 19.0422 4.0918
0.0397 22.4282 46000 0.1000 18.9452 4.0832
0.0421 22.9159 47000 0.1001 19.0466 4.0879
0.0413 23.4033 48000 0.0988 18.9100 4.0508
0.0316 23.8910 49000 0.1009 18.9805 4.0642
0.0367 24.3784 50000 0.0999 18.8307 4.0303
0.0312 24.8661 51000 0.0982 18.8307 4.0248
0.032 25.3536 52000 0.0991 18.7822 4.0082
0.03 25.8413 53000 0.0988 18.7117 4.0027
0.0336 26.3287 54000 0.0969 18.7558 4.0074
0.0272 26.8164 55000 0.0993 18.6721 3.9916
0.0337 27.3038 56000 0.0994 18.6853 3.9964
0.0361 27.7915 57000 0.0995 18.7029 3.9964
0.0378 28.2790 58000 0.0994 18.6809 3.9845
0.0268 28.7666 59000 0.0989 18.6765 3.9853
0.0364 29.2541 60000 0.0986 18.6897 3.9901
0.0354 29.7418 61000 0.0987 18.6853 3.9908

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
12
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Evaluation results