wav2vec2-xls-r-300m-pt-500h-FO-500h-IS-cp14-faroese-100h-30-epochs_run9_2025-09-10
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0987
- Wer: 18.6853
- Cer: 3.9908
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|---|---|---|---|---|---|
| 3.2979 | 0.4877 | 1000 | 3.2300 | 100.0 | 99.2291 |
| 0.7248 | 0.9754 | 2000 | 0.4206 | 39.0933 | 10.3811 |
| 0.3723 | 1.4628 | 3000 | 0.2100 | 29.3695 | 7.3497 |
| 0.329 | 1.9505 | 4000 | 0.1888 | 27.7261 | 6.8250 |
| 0.272 | 2.4379 | 5000 | 0.1598 | 26.2061 | 6.2687 |
| 0.2413 | 2.9256 | 6000 | 0.1445 | 25.4042 | 6.0652 |
| 0.1809 | 3.4131 | 7000 | 0.1366 | 24.2543 | 5.7535 |
| 0.1936 | 3.9008 | 8000 | 0.1321 | 24.0472 | 5.6091 |
| 0.1516 | 4.3882 | 9000 | 0.1344 | 23.5053 | 5.4742 |
| 0.1724 | 4.8759 | 10000 | 0.1288 | 23.2410 | 5.4553 |
| 0.139 | 5.3633 | 11000 | 0.1289 | 22.8885 | 5.2951 |
| 0.1445 | 5.8510 | 12000 | 0.1243 | 22.9414 | 5.2691 |
| 0.1201 | 6.3385 | 13000 | 0.1193 | 22.6329 | 5.2115 |
| 0.1291 | 6.8261 | 14000 | 0.1154 | 22.1527 | 5.0631 |
| 0.1021 | 7.3136 | 15000 | 0.1118 | 21.6328 | 4.9156 |
| 0.1081 | 7.8013 | 16000 | 0.1145 | 21.8575 | 5.0008 |
| 0.1032 | 8.2887 | 17000 | 0.1118 | 21.4390 | 4.8651 |
| 0.1073 | 8.7764 | 18000 | 0.1098 | 21.1350 | 4.7972 |
| 0.0872 | 9.2638 | 19000 | 0.1119 | 21.1438 | 4.8130 |
| 0.0997 | 9.7515 | 20000 | 0.1031 | 20.8706 | 4.7120 |
| 0.0817 | 10.2390 | 21000 | 0.1086 | 20.7384 | 4.6718 |
| 0.081 | 10.7267 | 22000 | 0.1050 | 20.9147 | 4.6828 |
| 0.0674 | 11.2141 | 23000 | 0.1103 | 20.6371 | 4.6386 |
| 0.0727 | 11.7018 | 24000 | 0.1119 | 20.6459 | 4.6284 |
| 0.0711 | 12.1892 | 25000 | 0.1059 | 20.4520 | 4.5676 |
| 0.068 | 12.6769 | 26000 | 0.1027 | 20.3507 | 4.4958 |
| 0.0654 | 13.1644 | 27000 | 0.1030 | 20.3375 | 4.5274 |
| 0.064 | 13.6520 | 28000 | 0.1066 | 20.4564 | 4.5282 |
| 0.0645 | 14.1395 | 29000 | 0.1056 | 20.3066 | 4.4974 |
| 0.0729 | 14.6272 | 30000 | 0.1016 | 19.9366 | 4.4059 |
| 0.053 | 15.1146 | 31000 | 0.1083 | 19.7956 | 4.3356 |
| 0.0534 | 15.6023 | 32000 | 0.1051 | 19.7779 | 4.3467 |
| 0.058 | 16.0897 | 33000 | 0.1060 | 19.7471 | 4.3285 |
| 0.0582 | 16.5774 | 34000 | 0.1034 | 19.7559 | 4.3104 |
| 0.046 | 17.0649 | 35000 | 0.1052 | 19.7383 | 4.2938 |
| 0.0433 | 17.5525 | 36000 | 0.0995 | 19.7163 | 4.2836 |
| 0.0503 | 18.0400 | 37000 | 0.1001 | 19.5488 | 4.2252 |
| 0.0407 | 18.5277 | 38000 | 0.0991 | 19.5841 | 4.2378 |
| 0.0443 | 19.0151 | 39000 | 0.0979 | 19.4563 | 4.1834 |
| 0.0443 | 19.5028 | 40000 | 0.1061 | 19.3374 | 4.2228 |
| 0.0412 | 19.9905 | 41000 | 0.1016 | 19.2801 | 4.1849 |
| 0.0426 | 20.4779 | 42000 | 0.1036 | 19.3109 | 4.2039 |
| 0.0332 | 20.9656 | 43000 | 0.1027 | 19.0598 | 4.1242 |
| 0.0348 | 21.4531 | 44000 | 0.0988 | 19.1083 | 4.1210 |
| 0.0505 | 21.9407 | 45000 | 0.0978 | 19.0422 | 4.0918 |
| 0.0397 | 22.4282 | 46000 | 0.1000 | 18.9452 | 4.0832 |
| 0.0421 | 22.9159 | 47000 | 0.1001 | 19.0466 | 4.0879 |
| 0.0413 | 23.4033 | 48000 | 0.0988 | 18.9100 | 4.0508 |
| 0.0316 | 23.8910 | 49000 | 0.1009 | 18.9805 | 4.0642 |
| 0.0367 | 24.3784 | 50000 | 0.0999 | 18.8307 | 4.0303 |
| 0.0312 | 24.8661 | 51000 | 0.0982 | 18.8307 | 4.0248 |
| 0.032 | 25.3536 | 52000 | 0.0991 | 18.7822 | 4.0082 |
| 0.03 | 25.8413 | 53000 | 0.0988 | 18.7117 | 4.0027 |
| 0.0336 | 26.3287 | 54000 | 0.0969 | 18.7558 | 4.0074 |
| 0.0272 | 26.8164 | 55000 | 0.0993 | 18.6721 | 3.9916 |
| 0.0337 | 27.3038 | 56000 | 0.0994 | 18.6853 | 3.9964 |
| 0.0361 | 27.7915 | 57000 | 0.0995 | 18.7029 | 3.9964 |
| 0.0378 | 28.2790 | 58000 | 0.0994 | 18.6809 | 3.9845 |
| 0.0268 | 28.7666 | 59000 | 0.0989 | 18.6765 | 3.9853 |
| 0.0364 | 29.2541 | 60000 | 0.0986 | 18.6897 | 3.9901 |
| 0.0354 | 29.7418 | 61000 | 0.0987 | 18.6853 | 3.9908 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 12