Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    CastError
Message:      Couldn't cast
fields: list<item: list<item: list<item: list<item: float>>>>
  child 0, item: list<item: list<item: list<item: float>>>
      child 0, item: list<item: list<item: float>>
          child 0, item: list<item: float>
              child 0, item: float
to
{'fields': Array4D(shape=(32, 8, 128, 128), dtype='float32'), 'nominal_condition': Array2D(shape=(32, 4), dtype='float32'), 'real_condition': Array2D(shape=(32, 4), dtype='float32')}
because column names don't match
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1869, in _prepare_split_single
                  for key, table in generator:
                                    ^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 609, in wrapped
                  for item in generator(*args, **kwargs):
                              ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/hdf5/hdf5.py", line 91, in _generate_tables
                  yield Key(file_idx, batch_idx), cast_table_to_features(pa_table, self.info.features)
                                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2192, in cast_table_to_features
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              fields: list<item: list<item: list<item: list<item: float>>>>
                child 0, item: list<item: list<item: list<item: float>>>
                    child 0, item: list<item: list<item: float>>
                        child 0, item: list<item: float>
                            child 0, item: float
              to
              {'fields': Array4D(shape=(32, 8, 128, 128), dtype='float32'), 'nominal_condition': Array2D(shape=(32, 4), dtype='float32'), 'real_condition': Array2D(shape=(32, 4), dtype='float32')}
              because column names don't match
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1342, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 907, in stream_convert_to_parquet
                  builder._prepare_split(split_generator=splits_generators[split], file_format="parquet")
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1736, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1919, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

fields
array 4D
nominal_condition
array 2D
real_condition
array 2D
[[[[104042.7578125,103938.03125,103919.2578125,103884.0390625,103835.9453125,103778.484375,103712.46(...TRUNCATED)
[[5.384925842285156,4.436269283294678,18.324588775634766,6.983870983123779],[5.384925842285156,4.436(...TRUNCATED)
[[5.341846466064453,4.49120569229126,18.58052635192871,6.808815956115723],[5.434372901916504,4.55296(...TRUNCATED)
[[[[102598.0390625,102547.46875,102534.9765625,102516.3046875,102491.84375,102463.015625,102430.1875(...TRUNCATED)
[[7.884925842285156,3.102936029434204,14.324588775634766,8.412442207336426],[7.884925842285156,3.102(...TRUNCATED)
[[7.878109931945801,3.145479202270508,13.989706993103027,8.347661972045898],[8.11386775970459,3.0765(...TRUNCATED)
[[[[103243.6875,103160.796875,103142.7109375,103114.9453125,103077.8828125,103034.1015625,102984.265(...TRUNCATED)
[[6.634925842285156,3.7696027755737305,16.324588775634766,6.269585132598877],[6.634925842285156,3.76(...TRUNCATED)
[[6.464804649353027,3.8468704223632812,16.167211532592773,6.371316909790039],[6.53316593170166,3.787(...TRUNCATED)
[[[[104704.890625,104548.0390625,104517.9375,104472.203125,104409.2890625,104334.5390625,104249.4296(...TRUNCATED)
[[9.134925842285156,4.880713939666748,10.324588775634766,7.698156833648682],[9.134925842285156,4.880(...TRUNCATED)
[[9.313030242919922,4.921929359436035,10.230025291442871,7.638960361480713],[9.067302703857422,4.958(...TRUNCATED)
[[[[102879.6953125,102829.2265625,102824.234375,102807.703125,102783.8984375,102754.71875,102720.570(...TRUNCATED)
[[6.009925842285156,3.5473804473876953,12.324588775634766,9.84101390838623],[6.009925842285156,3.547(...TRUNCATED)
[[6.091699123382568,3.5026228427886963,12.181334495544434,9.778738975524902],[6.028494834899902,3.55(...TRUNCATED)
[[[[103842.1875,103743.6875,103723.6171875,103689.0546875,103642.5703125,103587.359375,103524.15625,(...TRUNCATED)
[[8.509925842285156,4.214046955108643,19.124588012695312,9.126728057861328],[8.509925842285156,4.214(...TRUNCATED)
[[8.876568794250488,4.027876377105713,18.85281753540039,8.70348834991455],[8.759965896606445,4.29713(...TRUNCATED)
[[[[104203.875,104065.890625,104038.5234375,103997.7890625,103942.2265625,103876.484375,103801.84375(...TRUNCATED)
[[7.259925842285156,4.658491611480713,15.124588966369629,5.555299282073975],[7.259925842285156,4.658(...TRUNCATED)
[[7.151151180267334,4.744236946105957,15.201214790344238,5.86932897567749],[7.41375207901001,4.70141(...TRUNCATED)
[[[[102710.046875,102641.8046875,102625.953125,102604.7890625,102576.734375,102543.84375,102506.7343(...TRUNCATED)
[[9.759925842285156,3.3251583576202393,17.124588012695312,6.881830215454102],[9.759925842285156,3.32(...TRUNCATED)
[[9.816727638244629,3.3587911128997803,16.814970016479492,6.886974811553955],[9.22649097442627,3.345(...TRUNCATED)
[[[[103374.4609375,103303.203125,103293.421875,103269.953125,103236.8984375,103196.796875,103150.195(...TRUNCATED)
[[5.072425842285156,3.9918248653411865,11.124588966369629,8.310401916503906],[5.072425842285156,3.99(...TRUNCATED)
[[4.993771076202393,4.061351299285889,11.025394439697266,8.160308837890625],[5.026553153991699,4.142(...TRUNCATED)
[[[[104017.28125,103888.1328125,103862.4375,103824.609375,103772.953125,103711.7890625,103642.335937(...TRUNCATED)
[[7.572425842285156,4.3621954917907715,13.124588966369629,6.167544364929199],[7.572425842285156,4.36(...TRUNCATED)
[[7.522111415863037,4.261669158935547,12.972363471984863,6.17733907699585],[7.490091323852539,4.4299(...TRUNCATED)
End of preview.

Physics vs Distributions: Pareto Optimal Flow Matching with Physics Constraints

arXiv View on GitHub

This repository contains the datasets for the dynamic stall and Kolmogorov flow cases presented in the paper "Physics vs Distributions: Pareto Optimal Flow Matching with Physics Constraints".

Dynamic Stall dataset

The design space is defined as a four-dimensional hypercube. The design variables are:

Design variable Symbol Description Range
Free-stream Mach number $ M_{\infty} $ Ratio of free-stream velocity to speed of sound 0.3 – 0.5
Mean angle of attack $ \alpha_0 $ Average angle between chord line and flow direction 5° – 10°
Pitching amplitude $ \alpha_s $ Maximum angular deviation during pitching motion 5° – 10°
Reduced frequency $ k = \dfrac{\omega c}{2V_{\infty}} $ Non-dimensional frequency of oscillation 0.05 – 0.1

The hypercube is sampled with 128 points for training and 16 points for testing. Each sampled point represents a nominal operating condition.

Each nominal condition is perturbed as follows:

xperturbed=(1+N(0,0.02))xnominal x_{\text{perturbed}} = (1 + \mathcal{N}(0, 0.02)) \cdot x_{\text{nominal}}

where $\mathcal{N}(0, 0.02)$ denotes a Gaussian noise term with zero mean and standard deviation 0.02.

This results in 32 perturbed variations per nominal condition, yielding a total of:

  • $128 \times 32 = 4096$ simulations for training
  • $16 \times 32 = 512$ simulations for testing

Each simulation that corresponds to a dataset sample has 6 fields of size $128 \times 128$. The fields correspond to:

  • Absolute pressure
  • x-wall tangential velocity gradient
  • y-wall tangential velocity gradient
  • Temperature
  • Density
  • Wall shear stress

Each hdf5 file contains three arrays:

  • fields with shape (conditions, samples per condition, fields, x, y)
  • nominal_condition with shape (nominal conditions, samples per condition, design variables)
  • real_condition with shape (real conditions, samples per condition, design variables)

Kolmogorov flow dataset

The Kolmogorov flow problem spans Reynolds numbers in the range $[100, 500]$, using a spatial resolution of $128 \times 128$. The simulations are performed using TorchFSM. The training dataset includes 32 different flow conditions, while the validation dataset contains 16 conditions. Each condition has $1, 024$ snapshots.

Each simulation that corresponds to a dataset sample has 2 fields of size $128 \times 128$. The fields correspond to:

  • x-velocity
  • y-velocity

Each hdf5 file contains two arrays:

  • fields with shape (conditions, samples per condition, fields, x, y)
  • reynolds with shape (reynolds numbers, )

Citation

@inproceedings{pbfm2026,
    title={Physics vs Distributions: Pareto Optimal Flow Matching with Physics Constraints},
    author={Giacomo Baldan and Qiang Liu and Alberto Guardone and Nils Thuerey},
    booktitle={The Fourteenth International Conference on Learning Representations},
    year={2026},
    url={https://openreview.net/forum?id=tAf1KI3d4X}
}
Downloads last month
14

Paper for thuerey-group/PBFM