The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationError
Exception: CastError
Message: Couldn't cast
fields: list<item: list<item: list<item: list<item: float>>>>
child 0, item: list<item: list<item: list<item: float>>>
child 0, item: list<item: list<item: float>>
child 0, item: list<item: float>
child 0, item: float
to
{'fields': Array4D(shape=(32, 8, 128, 128), dtype='float32'), 'nominal_condition': Array2D(shape=(32, 4), dtype='float32'), 'real_condition': Array2D(shape=(32, 4), dtype='float32')}
because column names don't match
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1869, in _prepare_split_single
for key, table in generator:
^^^^^^^^^
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 609, in wrapped
for item in generator(*args, **kwargs):
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/hdf5/hdf5.py", line 91, in _generate_tables
yield Key(file_idx, batch_idx), cast_table_to_features(pa_table, self.info.features)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2192, in cast_table_to_features
raise CastError(
datasets.table.CastError: Couldn't cast
fields: list<item: list<item: list<item: list<item: float>>>>
child 0, item: list<item: list<item: list<item: float>>>
child 0, item: list<item: list<item: float>>
child 0, item: list<item: float>
child 0, item: float
to
{'fields': Array4D(shape=(32, 8, 128, 128), dtype='float32'), 'nominal_condition': Array2D(shape=(32, 4), dtype='float32'), 'real_condition': Array2D(shape=(32, 4), dtype='float32')}
because column names don't match
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1342, in compute_config_parquet_and_info_response
parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 907, in stream_convert_to_parquet
builder._prepare_split(split_generator=splits_generators[split], file_format="parquet")
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1736, in _prepare_split
for job_id, done, content in self._prepare_split_single(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1919, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.exceptions.DatasetGenerationError: An error occurred while generating the datasetNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
fields
array 4D | nominal_condition
array 2D | real_condition
array 2D |
|---|---|---|
[[[[104042.7578125,103938.03125,103919.2578125,103884.0390625,103835.9453125,103778.484375,103712.46(...TRUNCATED)
| [[5.384925842285156,4.436269283294678,18.324588775634766,6.983870983123779],[5.384925842285156,4.436(...TRUNCATED)
| [[5.341846466064453,4.49120569229126,18.58052635192871,6.808815956115723],[5.434372901916504,4.55296(...TRUNCATED)
|
[[[[102598.0390625,102547.46875,102534.9765625,102516.3046875,102491.84375,102463.015625,102430.1875(...TRUNCATED)
| [[7.884925842285156,3.102936029434204,14.324588775634766,8.412442207336426],[7.884925842285156,3.102(...TRUNCATED)
| [[7.878109931945801,3.145479202270508,13.989706993103027,8.347661972045898],[8.11386775970459,3.0765(...TRUNCATED)
|
[[[[103243.6875,103160.796875,103142.7109375,103114.9453125,103077.8828125,103034.1015625,102984.265(...TRUNCATED)
| [[6.634925842285156,3.7696027755737305,16.324588775634766,6.269585132598877],[6.634925842285156,3.76(...TRUNCATED)
| [[6.464804649353027,3.8468704223632812,16.167211532592773,6.371316909790039],[6.53316593170166,3.787(...TRUNCATED)
|
[[[[104704.890625,104548.0390625,104517.9375,104472.203125,104409.2890625,104334.5390625,104249.4296(...TRUNCATED)
| [[9.134925842285156,4.880713939666748,10.324588775634766,7.698156833648682],[9.134925842285156,4.880(...TRUNCATED)
| [[9.313030242919922,4.921929359436035,10.230025291442871,7.638960361480713],[9.067302703857422,4.958(...TRUNCATED)
|
[[[[102879.6953125,102829.2265625,102824.234375,102807.703125,102783.8984375,102754.71875,102720.570(...TRUNCATED)
| [[6.009925842285156,3.5473804473876953,12.324588775634766,9.84101390838623],[6.009925842285156,3.547(...TRUNCATED)
| [[6.091699123382568,3.5026228427886963,12.181334495544434,9.778738975524902],[6.028494834899902,3.55(...TRUNCATED)
|
[[[[103842.1875,103743.6875,103723.6171875,103689.0546875,103642.5703125,103587.359375,103524.15625,(...TRUNCATED)
| [[8.509925842285156,4.214046955108643,19.124588012695312,9.126728057861328],[8.509925842285156,4.214(...TRUNCATED)
| [[8.876568794250488,4.027876377105713,18.85281753540039,8.70348834991455],[8.759965896606445,4.29713(...TRUNCATED)
|
[[[[104203.875,104065.890625,104038.5234375,103997.7890625,103942.2265625,103876.484375,103801.84375(...TRUNCATED)
| [[7.259925842285156,4.658491611480713,15.124588966369629,5.555299282073975],[7.259925842285156,4.658(...TRUNCATED)
| [[7.151151180267334,4.744236946105957,15.201214790344238,5.86932897567749],[7.41375207901001,4.70141(...TRUNCATED)
|
[[[[102710.046875,102641.8046875,102625.953125,102604.7890625,102576.734375,102543.84375,102506.7343(...TRUNCATED)
| [[9.759925842285156,3.3251583576202393,17.124588012695312,6.881830215454102],[9.759925842285156,3.32(...TRUNCATED)
| [[9.816727638244629,3.3587911128997803,16.814970016479492,6.886974811553955],[9.22649097442627,3.345(...TRUNCATED)
|
[[[[103374.4609375,103303.203125,103293.421875,103269.953125,103236.8984375,103196.796875,103150.195(...TRUNCATED)
| [[5.072425842285156,3.9918248653411865,11.124588966369629,8.310401916503906],[5.072425842285156,3.99(...TRUNCATED)
| [[4.993771076202393,4.061351299285889,11.025394439697266,8.160308837890625],[5.026553153991699,4.142(...TRUNCATED)
|
[[[[104017.28125,103888.1328125,103862.4375,103824.609375,103772.953125,103711.7890625,103642.335937(...TRUNCATED)
| [[7.572425842285156,4.3621954917907715,13.124588966369629,6.167544364929199],[7.572425842285156,4.36(...TRUNCATED)
| [[7.522111415863037,4.261669158935547,12.972363471984863,6.17733907699585],[7.490091323852539,4.4299(...TRUNCATED)
|
Physics vs Distributions: Pareto Optimal Flow Matching with Physics Constraints
This repository contains the datasets for the dynamic stall and Kolmogorov flow cases presented in the paper "Physics vs Distributions: Pareto Optimal Flow Matching with Physics Constraints".
Dynamic Stall dataset
The design space is defined as a four-dimensional hypercube. The design variables are:
| Design variable | Symbol | Description | Range |
|---|---|---|---|
| Free-stream Mach number | $ M_{\infty} $ | Ratio of free-stream velocity to speed of sound | 0.3 – 0.5 |
| Mean angle of attack | $ \alpha_0 $ | Average angle between chord line and flow direction | 5° – 10° |
| Pitching amplitude | $ \alpha_s $ | Maximum angular deviation during pitching motion | 5° – 10° |
| Reduced frequency | $ k = \dfrac{\omega c}{2V_{\infty}} $ | Non-dimensional frequency of oscillation | 0.05 – 0.1 |
The hypercube is sampled with 128 points for training and 16 points for testing. Each sampled point represents a nominal operating condition.
Each nominal condition is perturbed as follows:
where $\mathcal{N}(0, 0.02)$ denotes a Gaussian noise term with zero mean and standard deviation 0.02.
This results in 32 perturbed variations per nominal condition, yielding a total of:
- $128 \times 32 = 4096$ simulations for training
- $16 \times 32 = 512$ simulations for testing
Each simulation that corresponds to a dataset sample has 6 fields of size $128 \times 128$. The fields correspond to:
- Absolute pressure
- x-wall tangential velocity gradient
- y-wall tangential velocity gradient
- Temperature
- Density
- Wall shear stress
Each hdf5 file contains three arrays:
fieldswith shape(conditions, samples per condition, fields, x, y)nominal_conditionwith shape(nominal conditions, samples per condition, design variables)real_conditionwith shape(real conditions, samples per condition, design variables)
Kolmogorov flow dataset
The Kolmogorov flow problem spans Reynolds numbers in the range $[100, 500]$, using a spatial resolution of $128 \times 128$. The simulations are performed using TorchFSM. The training dataset includes 32 different flow conditions, while the validation dataset contains 16 conditions. Each condition has $1, 024$ snapshots.
Each simulation that corresponds to a dataset sample has 2 fields of size $128 \times 128$. The fields correspond to:
- x-velocity
- y-velocity
Each hdf5 file contains two arrays:
fieldswith shape(conditions, samples per condition, fields, x, y)reynoldswith shape(reynolds numbers, )
Citation
@inproceedings{pbfm2026,
title={Physics vs Distributions: Pareto Optimal Flow Matching with Physics Constraints},
author={Giacomo Baldan and Qiang Liu and Alberto Guardone and Nils Thuerey},
booktitle={The Fourteenth International Conference on Learning Representations},
year={2026},
url={https://openreview.net/forum?id=tAf1KI3d4X}
}
- Downloads last month
- 14