id
stringlengths 13
13
| arabic
stringlengths 2
134
| english
stringlengths 2
205
| episode
int64 1
6
| dialect
stringclasses 1
value | language
stringclasses 1
value | language_variant
stringclasses 1
value | genre
stringclasses 2
values | domain
stringclasses 18
values |
|---|---|---|---|---|---|---|---|---|
ep02_line0184
|
ما تاخذنيش
|
I'm sorry.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep01_line0355
|
ده... ده زمان
|
That was a long time ago.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep02_line0333
|
دي كلها تنويعات على نفس الحدوتة لإيزيس وازوريس
|
These are all just versions of the Isis and Osiris story.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep05_line0245
|
لأ وأنت فالح أوي يا خويا. بتعرف تتصرف
|
You're a genius who has it all figured out
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
technology
|
ep03_line0263
|
تسلمي لي يا حبيبتي
|
Bless you, dear.
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
romance
|
ep05_line0095
|
الجاثوم ده يا دكتور هو كائن خرافي له أوصاف مختلفة
|
The Incubus is a mythical creature that can take many different forms.
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
medical
|
ep01_line0017
|
وهو الخير لازم يعلن عن وجوده بدلق القهوة؟
|
Can't good omens manifest in a shape other than spilled coffee?
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
social
|
ep02_line0312
|
زهرة عشب صفرا في اقصى الغرب
|
A yellow flower in the far west.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep02_line0050
|
رمزي، ماتعطلش الدكاترة يا رمزي
|
Ramzi, let the doctors do their job.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
medical
|
ep03_line0096
|
هويدا، خطيبة رفعت
|
Howaida, she's his fiancee
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep04_line0083
|
بتندهله تاني
|
She’s summoning him again.
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep05_line0208
|
طيب، ممكن حضرتك تفهمني حتفضل صاحي كده لحد إمتى؟
|
How long are you planning on staying awake?
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep04_line0325
|
كنت دايما بشوف إن دي وجهة خشب مخبية وراها قلب طيب
|
I always thought that he only acted tough. Behind that act was a kind heart.
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
romance
|
ep02_line0107
|
علاقة مع ست؟
|
Is it a woman?
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep06_line0129
|
رفعت مش هنا
|
Refaat is not here.
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep02_line0186
|
كل اللي كانوا معاك النهاردة في اوضة التشريح تعيش أنت
|
All the people with you in the autopsy room today passed away.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
technology
|
ep04_line0385
|
إطلع برة داري بدل ما أفرتك المسدس ده في دماغك، إطلع!
|
Now get out of my house before you make me a murderer.
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
horror
|
ep02_line0086
|
أنا قولتلها إن انت عازمها على السيما النهاردة، هه؟
|
I told her that you're taking her to the movies tonight.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
technology
|
ep06_line0198
|
رفعت، أنت شوفتها يا رفعت؟
|
Did you see her, Refaat?
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
technology
|
ep04_line0218
|
حلوة عليا؟
|
How do I look?
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
food
|
ep01_line0318
|
أنت تعرف تقولها كلام حب؟
|
Do you know how to say romantic things?
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
technology
|
ep01_line0457
|
لو جيت مصر علشان أشوف المشهد ده، كفاية عليا
|
If I came to Egypt just to see that, it would be totally enough for me.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
entertainment
|
ep04_line0181
|
دكتور سامي
|
Dr. Sami
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
medical
|
ep06_line0123
|
ربما كانت نصيحة التاروت أن تعود للوطن أو للبيت، الأمر الذي لابد أنك فعلته
|
The card may tell you to return home, which you must have done already.
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
politics
|
ep01_line0095
|
وعاملة تورتة.
|
And I made a cake
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep01_line0315
|
ماكنتش عارفة إنك خاطب
|
I didn't know that you were engaged.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
technology
|
ep01_line0263
|
أنا معاكي أهو
|
I'm back now.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep01_line0370
|
يمكن لو قولته يطلع يصح
|
If you try to say it, you'll faint again.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep02_line0140
|
دي لو مزعقتليش يوم واحد، اقلق عليها
|
If a day passes without her yelling, I'd be worried about her
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
horror
|
ep03_line0267
|
مالك يا هويدا؟
|
What's wrong?
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep06_line0317
|
خد بالك من نفسك يا رفعت
|
Take good care, Refaat
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep02_line0211
|
عملنا.
|
We did.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
family
|
ep02_line0318
|
هو احنا فعلا انقذنا العالم من لعنة يا رفعت؟
|
Did we really save the world from a curse, Refaat?
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
horror
|
ep01_line0328
|
بس مش عيني اللي بتشوف
|
But I don't see her there with my eyes
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep05_line0051
|
الحباية دي تلازمك طول الوقت
|
Carry these all the time.
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
romance
|
ep02_line0434
|
انا مشيت ورا تعويذات وبرديات ولعنات وبرضو ماعرفتش انقذها
|
I followed spells, papyrus, Sistrum, and still, I couldn't save her.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
weather
|
ep03_line0129
|
وهدول التماثيل تبين حدودهم
|
These statues mark the border.
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep02_line0026
|
لا يا حبيبي.
|
No, sweetheart.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
romance
|
ep06_line0170
|
سيبيني يا ماجي
|
Go away, Maggie!
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep03_line0035
|
طب قوم روح
|
You should go.
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep04_line0322
|
فاكر؟
|
Forget that?
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep05_line0265
|
قانون رفعت رقم 5 القديم
|
Refaat's 5th law.
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
legal
|
ep02_line0342
|
أنا رايح اعمل مصيبة يا ماجي
|
Maggie, what I'm about to do is dangerous.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
family
|
ep05_line0202
|
يعني مثلا الشمعة في الحلم عند واحد ممكن تكون بترمز للإيمان
|
A candle in a dream could symbolize faith for one person.
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
family
|
ep01_line0144
|
يعني لو ضيفة دكتور رفعت أكيد تنورينا
|
Dr. Refaat's guests are always welcome.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
medical
|
ep03_line0265
|
عبقري
|
Genius!
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep03_line0072
|
أعرف إنك بتكرهي المؤتمرات
|
I know you hate conferences
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
news
|
ep04_line0019
|
أو إنك انت قادر تقرر إزاي تحميهم
|
Or that only you know how to protect them.
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
technology
|
ep05_line0023
|
الظاهر أنا جيت للشخص المناسب فعلا
|
It seems like I really came to the right person.
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
social
|
ep02_line0142
|
شوفتها في الكوريدور بس قعدت أدقق مالقتهاش
|
She was in the hallway when I tried to look closer, and she left.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
entertainment
|
ep01_line0070
|
أنا مش خايبة يا أبلة رئيفة
|
I'm not being awkward, Raeefa.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
family
|
ep06_line0257
|
طب ليه ماحذرتنيش؟
|
Why didn’t you warn me?
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep05_line0182
|
الست مابتحبش الراجل علشان جبروته أو شكله لكن ضعفه وقوته
|
The woman who loves her man just because of his strength
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
romance
|
ep06_line0288
|
أنت عارف I hate goodbyes
|
You know how I hate goodbyes
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
technology
|
ep03_line0065
|
إيه السبب؟
|
What's the reason?
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
family
|
ep01_line0274
|
غيرانين؟
|
Envious?
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep01_line0060
|
ده اخويا وأنا عارفاه
|
I know my brother very well.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
family
|
ep03_line0157
|
امشي في اتجاه خوفك يا رفعت
|
You must follow and confront this fear, Refaat.
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
horror
|
ep02_line0020
|
على فكرة، انا مرة طلبت من واحدة زمان انها ترقص معايا ورفضت
|
By the way, I once asked a girl to dance with me, and she refused.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep04_line0369
|
بنته؟
|
His daughter?
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
family
|
ep01_line0101
|
إزيك يا ست البنات؟
|
How are you, dear?
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep03_line0050
|
انسى الحكاية دي
|
Forget about that story.
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep05_line0007
|
الكاهنة الكبرى
|
This is the High Priestess's card
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep06_line0144
|
والله هو
|
I swear it is
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep01_line0088
|
اتفضل
|
Come in. Come in.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep03_line0101
|
أنا ماعنديش حل تاني
|
I'm out of options.
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep01_line0290
|
أنا هدو ر عليه في شقة إلهام.
|
I will look for him at Elham's.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep04_line0205
|
وافترض الراجل ده ساعده؟
|
What if that guy could help?
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep01_line0109
|
أنا اللي جاي من المنصورة جيت قبله
|
I beat him here even though I came all the way from Mansoura.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
food
|
ep05_line0094
|
وكل حاجة اتلخبطت
|
Then everything went to hell
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep01_line0157
|
قصدي يا رفعت
|
I mean, Refaat.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep06_line0122
|
لو خايف، خليك مع العيال
|
Stay with the kids if you’re scared.
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep04_line0367
|
اعترف
|
Admit it!
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep05_line0072
|
مضبوط، بس كنت مستعجل
|
I was, but ... I was in a hurry.
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
technology
|
ep03_line0244
|
كنت مهتم لدرجة إني نسيت كل اللي اتعلمته
|
I cared so much that I forgot everything I had learned.
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
technology
|
ep02_line0239
|
الفرعون كان حاسس بكراهية الناس ليه
|
The Pharaoh felt the people's hatred towards him
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
social
|
ep04_line0170
|
فات البلد لما الغولة نادتله
|
He left the town when the demon called him
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
horror
|
ep04_line0473
|
أنا آسف إني كنت السبب في كسر رجلك
|
I'm genuinely sorry for all your suffering.
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
paranormal
|
ep06_line0136
|
كالعادة رفعت ما بيعرفش يلعب استغماية
|
Refaat is still terrible at hide and seek.
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep01_line0175
|
لو رضا عرف يا رئيفة مش هيحصل خير
|
If Reda finds out, we'll be blamed.
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep01_line0175
|
معلش، بالإذن أنا
|
May I be excused?
| 1
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep03_line0081
|
أعرف إنك بتكرهي المؤتمرات
|
I know you hate conferences.
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
news
|
ep03_line0144
|
ده حظك اليوم
|
So, this is the daily horoscope.
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep02_line0135
|
هو أنا لو اعرف ازاي انهي علاقة مع واحدة ست، كنت هافضل مع اختك السنين دي كلها؟
|
If I knew how to end a relationship with a woman, I wouldn't have stayed with your sister all these years.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
technology
|
ep06_line0010
|
ودي حمدية ماسكة البيت
|
This is Hamdeya, the house manager.
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep03_line0089
|
طرابلس، ليبيا
|
Tripoli, Libya
| 3
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep04_line0234
|
راقبيه كويس
|
Keep an eye on him.
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep06_line0132
|
احيانا يكون اختفاء الوحش مرعب أكتر من الوحش نفسه
|
The monster in your mind is scarier than the monster itself.
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
horror
|
ep02_line0080
|
داخل علينا ساحب في إيدك خوجاية وكمان قدام خطيبتك؟
|
Coming to my house with that foreigner with your fiancee here.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
romance
|
ep06_line0129
|
يالا يا أختي نروح بيت الخضراوي علشان نجيب رفعت
|
Let’s all go to Al Khadrawy’s house and save Refaat.
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
family
|
ep05_line0103
|
لكن لو على كلامك أنا بأمشي وأنا نايم ألف على الجيران
|
Otherwise, it means I’m sleepwalking now to places.
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
family
|
ep05_line0025
|
أنت تنام كل يوم في نفس المعاد وتنسى موضوع المنبه خالص
|
Go to sleep at the same time every night; don’t set your alarms.
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
crime
|
ep06_line0202
|
رئيفة!
|
Raeefa!
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep04_line0392
|
ابقى هات لي البحث بتاعك أقراه علشان لو هوصي عليك تيجي تناقشه عندنا في الكلية
|
Send me your research. I want to read it so I can recommend you to the university to discuss it.
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
education
|
ep04_line0029
|
ألو؟
|
Hello?
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep05_line0209
|
أيوة يا رئيفة بأعرف
|
Actually, I do.
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep05_line0249
|
ده أنا اللي شايلة همك في كل صغيرة وكبيرة
|
I'm the one carrying your burden.
| 5
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
ep02_line0273
|
تجلط للدم في الأوعية
|
Disseminated intravascular coagulation.
| 2
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
horror
|
ep06_line0156
|
ماتتحركش!
|
Stay still. Don’t move!
| 6
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
weather
|
ep04_line0323
|
أنا وقعت من البيت غصب عني
|
I swear I never wanted to hurt you.
| 4
|
egyptian
|
ar
|
ar_EG
|
dialogue
|
general
|
Egyptian Arabic Dialogue Dataset
Dataset Description
This dataset contains 4,322 parallel Egyptian Arabic-English dialogue pairs with automatic domain classification. The data is extracted from TV series subtitles and features natural conversational Egyptian Arabic dialect (العامية المصرية).
Languages
- Source: Egyptian Arabic (ar_EG) - Colloquial dialect
- Target: English (en)
Dataset Summary
Egyptian Arabic is one of the most widely spoken Arabic dialects, used by over 100 million speakers. This dataset provides:
- Natural conversational dialogue
- Colloquial expressions and idioms
- Domain-classified content for specialized training
- Episode context for narrative understanding
Dataset Structure
Data Format
Each entry contains:
{
"id": "ep01_line0001",
"arabic": "خلاويص؟",
"english": "Ready or not?",
"episode": 1,
"dialect": "egyptian",
"language": "ar",
"language_variant": "ar_EG",
"genre": "dialogue",
"domain": "general"
}
Data Fields
| Field | Type | Description |
|---|---|---|
id |
string | Unique identifier (format: epXX_lineYYYY) |
arabic |
string | Egyptian Arabic text |
english |
string | English translation |
episode |
int | Episode number (for context) |
dialect |
string | Dialect identifier (always "egyptian") |
language |
string | ISO language code (always "ar") |
language_variant |
string | Specific variant code (always "ar_EG") |
genre |
string | Content genre (dialogue/narration) |
domain |
string | Auto-detected content domain |
Dataset Statistics
Overview
- Total Entries: 4,322
- Episodes: 6
- Unique Domains: 18
- Unique Genres: 2
- Average Arabic Length: 25.9 characters
- Average English Length: 35.0 characters
Domain Distribution
| Domain | Count | Percentage |
|---|---|---|
| general | 2,143 | 49.6% |
| technology | 531 | 12.3% |
| family | 368 | 8.5% |
| horror | 281 | 6.5% |
| medical | 233 | 5.4% |
| romance | 136 | 3.1% |
| weather | 115 | 2.7% |
| food | 104 | 2.4% |
| paranormal | 86 | 2.0% |
| social | 55 | 1.3% |
Episode Distribution
| Episode | Entries |
|---|---|
| Episode 1 | 889 |
| Episode 2 | 782 |
| Episode 3 | 584 |
| Episode 4 | 907 |
| Episode 5 | 554 |
| Episode 6 | 606 |
Genre Distribution
- dialogue: 4,301 (99.5%)
- narration: 21 (0.5%)
Domains Explained
This dataset includes automatic domain classification using keyword-based detection:
- general - Everyday conversation without specific domain
- family - Family relationships, relatives, marriage
- horror - Scary themes, ghosts, supernatural fear
- medical - Healthcare, doctors, treatment
- technology - Computers, phones, internet, apps
- romance - Love, relationships, emotions
- paranormal - Mysterious, unexplained phenomena
- weather - Climate, meteorology, temperature
- food - Cooking, restaurants, meals
- social - Friends, gatherings, social life
- crime - Police, investigation, law enforcement
- education - Schools, universities, learning
- sports - Games, matches, tournaments
- entertainment - Movies, series, cinema
- legal - Law, court, legal matters
- news - Journalism, reports, media
- business - Companies, economy, trading
- politics - Government, elections, policy
Use Cases
✅ Recommended Use Cases
- Egyptian Arabic Translation: Train translation models specifically for Egyptian dialect
- Domain-Specific Models: Train models for specific domains (medical, legal, etc.)
- Dialect Studies: Research on Egyptian Arabic characteristics
- Conversational AI: Build chatbots for Egyptian users
- Language Modeling: Pre-train or fine-tune on Egyptian dialect
- Multi-Domain Learning: Train models aware of content domains
⚠️ Limitations
- Domain Scope: Limited to entertainment/dialogue domain content
- Register: Conversational/informal language only
- Size: 4,322 entries (relatively small for large-scale pre-training)
- Dialect Variation: Egyptian Arabic has regional sub-dialects not captured
- Context: Individual dialogue lines may lack broader narrative context
Loading the Dataset
Using Hugging Face Datasets
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("fr3on/egyptian-dialogue")
# Access the data
print(dataset['train'][0])
# Filter by domain
medical_data = dataset['train'].filter(lambda x: x['domain'] == 'medical')
# Filter by episode
episode_1 = dataset['train'].filter(lambda x: x['episode'] == 1)
Using Pandas
import pandas as pd
# Load Parquet file directly
df = pd.read_parquet("data/train-00000-of-00001.parquet")
# Analyze domains
print(df['domain'].value_counts())
# Filter and export
medical_df = df[df['domain'] == 'medical']
Training Examples
Translation Model
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Seq2SeqTrainer
# Load dataset
dataset = load_dataset("fr3on/egyptian-dialogue")
# Load model for Arabic-English translation
model_name = "Helsinki-NLP/opus-mt-ar-en"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Tokenize
def preprocess(examples):
inputs = tokenizer(examples['arabic'], truncation=True, max_length=128)
targets = tokenizer(examples['english'], truncation=True, max_length=128)
inputs['labels'] = targets['input_ids']
return inputs
tokenized = dataset.map(preprocess, batched=True)
# Train
trainer = Seq2SeqTrainer(
model=model,
train_dataset=tokenized['train'],
eval_dataset=tokenized['test']
)
trainer.train()
Domain-Aware Training
from datasets import load_dataset
dataset = load_dataset("fr3on/egyptian-dialogue")
# Train separate models per domain
for domain in ['medical', 'legal', 'technology']:
domain_data = dataset['train'].filter(lambda x: x['domain'] == domain)
# Train domain-specific model
print(f"Training {domain} model with {len(domain_data)} examples")
Data Collection & Processing
Source
- Origin: Egyptian TV series subtitles
- Language: Professional subtitle translations
- Quality: Natural, conversational Egyptian Arabic
Processing Pipeline
- Extraction: Load from Excel subtitle files
- Cleaning: Remove empty rows, very short entries
- Deduplication: Hash-based duplicate removal (945 duplicates removed)
- Domain Detection: Automatic classification using keyword matching
- Genre Classification: Automatic dialogue vs. narration detection
- Validation: Quality checks and statistics generation
Data Quality
- ✅ Deduplicated using MD5 hash matching
- ✅ Filtered entries < 2 characters
- ✅ Removed rows with missing translations
- ✅ Normalized whitespace
- ✅ Validated Arabic and English text pairs
Considerations for Using the Data
Egyptian Arabic Characteristics
Egyptian Arabic differs significantly from Modern Standard Arabic (MSA):
- Vocabulary: Distinct colloquial words (e.g., إزيك vs. كيف حالك)
- Grammar: Simplified structures (e.g., no case endings)
- Pronunciation: Different phonetics (e.g., ج pronounced as "g")
- Script: Informal spelling conventions in spoken contexts
Recommended Training Approaches
- Fine-tune multilingual models rather than training from scratch
- Combine with MSA data for better Arabic understanding
- Use domain filtering for specialized applications
- Consider episode context for narrative tasks
- Balance domain distribution if training general model
Ethical Considerations
- Dialect Representation: Egyptian Arabic is one of many Arabic dialects
- Cultural Context: Translations maintain cultural nuances
- Source Attribution: Data from TV series subtitles
- Privacy: No personal information included
License
This dataset is released under the CC BY 4.0 License.
Citation
If you use this dataset in your research, please cite:
@dataset{egyptian_dialogue_2026,
title={Egyptian Arabic Dialogue Dataset},
author={fr3on},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/fr3on/egyptian-dialogue}
}
Acknowledgments
- Source: Egyptian TV series subtitles
- Processing: Automatic domain detection and classification
- Format: Parquet for efficaient loading and storage
Version History
- v1.0.0 (2025-12-17): Initial release
- 4,322 entries
- 18 domain categories
- Automatic domain detection
- Parquet format
Keywords: Egyptian Arabic, ar_EG, dialect, colloquial, translation, dialogue, domain classification, NLP, machine translation, Arabic dialects, conversational AI, parquet
Dataset Size: 4,322 examples | Format: Parquet | License: CC BY 4.0
- Downloads last month
- 48