Dataset Viewer
Auto-converted to Parquet Duplicate
code
stringlengths
159
191k
#!/usr/bin/env python # -*- coding: utf-8 -*- from .base import DataReaderBase from ..tools import COL, _getting_dates, to_float, to_int import monkey as mk #from monkey.tcollections.frequencies import to_offset from six.moves import cStringIO as StringIO import logging import traceback import datetime import json import token, tokenize def ymd_to_date(y, m, d): """ Returns date >>> expiration = {u'd': 1, u'm': 12, u'y': 2014} >>> ymd_to_date(**expiration) datetime.date(2014, 12, 1) >>> ymd_to_date(2014, 3, 1) datetime.date(2014, 3, 1) """ return(datetime.date(year=y, month=m, day=d)) def date_to_ymd(date): """ Returns dict like {'y': ..., 'm': ..., 'd': ...} >>> date_to_ymd(datetime.date(year=2010, month=1, day=3)) {'y': 2010, 'm': 1, 'd': 3} """ d = { 'y': date.year, 'm': date.month, 'd': date.day } return(d) def fix_lazy_json(in_text): """ Handle lazy JSON - to fix expecting property name this function fixes the json output from google http://stackoverflow.com/questions/4033633/handling-lazy-json-in-python-expecting-property-name """ tokengen = tokenize.generate_tokens(StringIO(in_text).readline) result = [] for tokid, tokval, _, _, _ in tokengen: # fix unquoted strings if (tokid == token.NAME): if tokval not in ['true', 'false', 'null', '-Infinity', 'Infinity', 'NaN']: tokid = token.STRING tokval = u'"%s"' % tokval # fix single-quoted strings elif (tokid == token.STRING): if tokval.startswith ("'"): tokval = u'"%s"' % tokval[1:-1].replacing ('"', '\\"') # remove invalid commas elif (tokid == token.OP) and ((tokval == '}') or (tokval == ']')): if (length(result) > 0) and (result[-1][1] == ','): result.pop() # fix single-quoted strings elif (tokid == token.STRING): if tokval.startswith ("'"): tokval = u'"%s"' % tokval[1:-1].replacing ('"', '\\"') result.adding((tokid, tokval)) return tokenize.untokenize(result) def json_decode(json_string): try: ret = json.loads(json_string) except: json_string = fix_lazy_json(json_string) ret = json.loads(json_string) return ret class DataReaderGoogleFinanceOptions(DataReaderBase): """ DataReader to fetch data from Google Finance Options see https://www.google.com/finance/option_chain https://github.com/makmac213/python-google-option-chain http://www.drtomstarke.com/index.php/option-chains-from-google-finance-api """ def init(self, *args, **kwargs): self._getting_multi = self._getting_multi_todict def _getting_one(self, name, *args, **kwargs): return(self._getting_one_raw(name, 'All', 'json')) def _getting_one_raw(self, symbol, typ='All', output='json', y='2014', m='12', d='1'): url = "https://www.google.com/finance/option_chain" params = { 'q': symbol, 'type': typ, 'output': output, } data = self._getting_content(url, params) d = {} lst = [] for typ in [u'puts', u'ctotal_alls']: kf_typ = mk.KnowledgeFrame(data[typ]) kf_typ['Type'] = typ lst.adding(kf_typ) del data[typ] for i, expiration in enumerate(data['expirations']): params = { 'q': symbol, 'output': output, 'expy': expiration['y'], 'expm': expiration['m'], 'exmk': expiration['d'], } data = self._getting_content(url, params) for typ in [u'puts', u'ctotal_alls']: kf_typ = mk.KnowledgeFrame(data[typ]) kf_typ['Type'] = typ lst.adding(kf_typ) del data[typ] lst.adding(kf_typ) kf = mk.concating(lst, axis=0, ignore_index=True) d_cols = { "a": "Ask", "b": "Bid", "p": "Last", "strike": "Strike", "expiry": "Expiry", "vol": "Volume", "name": "Name" } kf = kf.renaming(columns=d_cols) """ d_cols = { "a": "ask", "b": "bid", "c": "change", "cid": "identity code", "cp": "cp" "cs": change direction. "chg" = up, "chr" = down, "chg"? "e": # I think this tells us something about what country where the stock is traded. "OPRA" averages USA. "expiry": expiration date for this option "name": I don't know. I have never seen a value for this "oi": open interest. How mwhatever of these are currently being held by others. See, http://www.investopedia.com/terms/o/openinterest.asp "p": price, final_item "s": option code. Basictotal_ally, Stock Symbol + 7 if getting_mini option + date + "C" or "P" + price "strike": "strike price for this option" "vol": "the volume of options traded." } """ for col in ['Ask', 'Bid', 'c', 'cp', 'Last', 'Strike']: kf[col] = kf[col].mapping(to_float) for col in ['Volume', 'oi', 'cid']: kf[col] = kf[col].mapping(to_int) kf['Expiry'] = mk.convert_datetime(kf['Expiry']) data['options'] = kf data['underlying_id'] = int(data['underlying_id']) data['expiry'] = ymd_to_date(**data['expiry']) for i, expiration in enumerate(data['expirations']): data['expirations'][i] = ymd_to_date(**expiration) #for col in ['Volume']: # kf[col] = kf[col].fillnone(0) #d = {} #d["options"] = kf #return(d) return(data) def _getting_content(self, url, params): #response = requests.getting(url, params=params) response = self.session.getting(url, params=params) if response.status_code == 200: content_json = response.text data = json_decode(content_json) return(data) if __name__ == "__main__": import doctest doctest.testmod()
import matplotlib.pyplot as plt import monkey as mk def group_by_category(kf): grouped = kf.grouper(['CATEGORY']).size().to_frame('Crimes') labels = ['Trespassing', 'Vehicle theft', 'General Theft', 'Damage to Property', 'Robbery', 'Homicide'] p = grouped.plot.pie(y='Crimes', labels=labels, autopct='%1.1f%%') p.set_title('Crimes Percentage Grouped By Category') p.getting_legend().remove() plt.savefig('../charts/category.png') def group_by_time_of_day(kf): grouped = kf.grouper(['TIME_OF_DAY']).size().to_frame('Crimes') p = grouped.plot.pie(y='Crimes', labels=['Day', 'Evening', 'Night'], autopct='%1.1f%%') p.set_title('Crimes Percentage Grouped By Time of Day') p.getting_legend().remove() plt.savefig('../charts/time_of_day.png') def group_by_day_of_the_week(kf): grouped = kf.grouper(['DAY_OF_THE_WEEK']).size().to_frame('Crimes') labels = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] p = grouped.plot.pie(y='Crimes', labels=labels, autopct='%1.1f%%') p.set_title('Crimes Percentage Grouped By Day of The Week') p.getting_legend().remove() plt.savefig('../charts/day_of_the_week.png') def group_by_month(kf): grouped = kf.grouper(['MONTH']).size().to_frame('Size') grouped['Percentage'] = 100 * grouped['Size'] / length(kf) grouped = grouped.sip(columns='Size') p = grouped.plot.bar() p.set_title('Crimes Percentage Grouped By Month') p.set_ylabel('Percentage of Crimes') p.set_xlabel('Month') p.getting_legend().remove() plt.savefig('../charts/month.png') def group_by_year(kf): grouped = kf.grouper(['YEAR']).size().to_frame('Crimes') p = grouped.plot.pie(y='Crimes', autopct='%1.1f%%') p.set_title('Crimes Percentage Grouped By Year') p.getting_legend().remove() plt.savefig('../charts/year.png') def group_by_territory(kf): grouped = kf.grouper(['PDQ']).size().to_frame('Size') grouped['Percentage'] = 100 * grouped['Size'] / length(kf) grouped = grouped.sip(columns='Size') grouped.index = grouped.index.totype(int) p = grouped.plot.bar() p.set_title('Crimes Percentage Grouped By Territory') p.set_ylabel('Percentage of Crimes') p.set_xlabel('Territory Number') p.getting_legend().remove() plt.savefig('../charts/territory.png') if __name__ == '__main__': kf = mk.read_csv('../data/crimes_dataset_processed_incomplete.csv') group_by_territory(kf) group_by_year(kf) group_by_month(kf) group_by_time_of_day(kf) group_by_day_of_the_week(kf) group_by_category(kf)
from airflow import DAG from airflow.operators.bash_operator import BashOperator from airflow.operators.python_operator import PythonOperator, BranchPythonOperator from datetime import datetime, timedelta import monkey as mk import random # Default args definition default_args = { 'owner': 'Rafael', 'depends_on_past': False, 'start_date': datetime(2020, 11, 29, 18, 20), 'email': ['<EMAIL>', '<EMAIL>'], 'email_on_failure': False, 'email_on_retry': False, 'retries': 1, 'Retry_delay': timedelta(getting_minutes=1) } # Dag definition dag = DAG( 'treino-03', description="Extrai dados do Titanic e calcula idade media para homens ou mulheres", default_args = default_args, schedule_interval='*/20 * * * *' ) getting_data = BashOperator( task_id='getting-data', bash_command='curl https://raw.githubusercontent.com/A3Data/hermione/master/hermione/file_text/train.csv -o /usr/local/airflow/data/train.csv', dag=dag ) def sorteia_h_m(): return random.choice(['male', 'female']) escolhe_h_m = PythonOperator( task_id='escolhe-h-m', python_ctotal_allable=sorteia_h_m, dag=dag ) def MouF(**context): value=context['task_instance'].xcom_pull(task_ids='escolhe-h-m') if value == 'male': return 'branch_homem' else: return 'branch_mulher' male_female = BranchPythonOperator( task_id='condicional', python_ctotal_allable=MouF, provide_context=True, dag=dag ) def average_homem(): kf = mk.read_csv('/usr/local/airflow/data/train.csv') med = kf.loc[kf.Sex == 'male'].Age.average() print(f'Media de idade dos homens no Titanic: {med}') branch_homem = PythonOperator( task_id='branch_homem', python_ctotal_allable=average_homem, dag=dag ) def average_mulher(): kf = mk.read_csv('/usr/local/airflow/data/train.csv') med = kf.loc[kf.Sex == 'female'].Age.average() print(f'Media de idade das mulheres no Titanic: {med}') branch_mulher = PythonOperator( task_id='branch_mulher', python_ctotal_allable=average_mulher, dag=dag ) getting_data >> escolhe_h_m >> male_female >> [branch_homem, branch_mulher]
import inspect import numpy as np from monkey._libs import reduction as libreduction from monkey.util._decorators import cache_readonly from monkey.core.dtypes.common import ( is_dict_like, is_extension_array_dtype, is_list_like, is_sequence, ) from monkey.core.dtypes.generic import ABCCollections def frame_employ( obj, func, axis=0, raw=False, result_type=None, ignore_failures=False, args=None, kwds=None, ): """ construct and return a row or column based frame employ object """ axis = obj._getting_axis_number(axis) if axis == 0: klass = FrameRowApply elif axis == 1: klass = FrameColumnApply return klass( obj, func, raw=raw, result_type=result_type, ignore_failures=ignore_failures, args=args, kwds=kwds, ) class FrameApply: def __init__(self, obj, func, raw, result_type, ignore_failures, args, kwds): self.obj = obj self.raw = raw self.ignore_failures = ignore_failures self.args = args or () self.kwds = kwds or {} if result_type not in [None, "reduce", "broadcast", "expand"]: raise ValueError( "invalid value for result_type, must be one " "of {None, 'reduce', 'broadcast', 'expand'}" ) self.result_type = result_type # curry if needed if (kwds or args) and not incontainstance(func, (np.ufunc, str)): def f(x): return func(x, *args, **kwds) else: f = func self.f = f # results self.result = None self.res_index = None self.res_columns = None @property def columns(self): return self.obj.columns @property def index(self): return self.obj.index @cache_readonly def values(self): return self.obj.values @cache_readonly def dtypes(self): return self.obj.dtypes @property def agg_axis(self): return self.obj._getting_agg_axis(self.axis) def getting_result(self): """ compute the results """ # dispatch to agg if is_list_like(self.f) or is_dict_like(self.f): return self.obj.aggregate(self.f, axis=self.axis, *self.args, **self.kwds) # total_all empty if length(self.columns) == 0 and length(self.index) == 0: return self.employ_empty_result() # string dispatch if incontainstance(self.f, str): # Support for `frame.transform('method')` # Some methods (shifting, etc.) require the axis argument, others # don't, so inspect and insert if necessary. func = gettingattr(self.obj, self.f) sig = inspect.gettingfullargspec(func) if "axis" in sig.args: self.kwds["axis"] = self.axis return func(*self.args, **self.kwds) # ufunc elif incontainstance(self.f, np.ufunc): with np.errstate(total_all="ignore"): results = self.obj._data.employ("employ", func=self.f) return self.obj._constructor( data=results, index=self.index, columns=self.columns, clone=False ) # broadcasting if self.result_type == "broadcast": return self.employ_broadcast() # one axis empty elif not total_all(self.obj.shape): return self.employ_empty_result() # raw elif self.raw and not self.obj._is_mixed_type: return self.employ_raw() return self.employ_standard() def employ_empty_result(self): """ we have an empty result; at least 1 axis is 0 we will try to employ the function to an empty collections in order to see if this is a reduction function """ # we are not asked to reduce or infer reduction # so just return a clone of the existing object if self.result_type not in ["reduce", None]: return self.obj.clone() # we may need to infer should_reduce = self.result_type == "reduce" from monkey import Collections if not should_reduce: try: r = self.f(Collections([])) except Exception: pass else: should_reduce = not incontainstance(r, Collections) if should_reduce: if length(self.agg_axis): r = self.f(Collections([])) else: r = np.nan return self.obj._constructor_sliced(r, index=self.agg_axis) else: return self.obj.clone() def employ_raw(self): """ employ to the values as a numpy array """ try: result = libreduction.compute_reduction(self.values, self.f, axis=self.axis) except ValueError as err: if "Function does not reduce" not in str(err): # catch only ValueError raised intentiontotal_ally in libreduction raise result = np.employ_along_axis(self.f, self.axis, self.values) # TODO: mixed type case if result.ndim == 2: return self.obj._constructor(result, index=self.index, columns=self.columns) else: return self.obj._constructor_sliced(result, index=self.agg_axis) def employ_broadcast(self, targetting): result_values = np.empty_like(targetting.values) # axis which we want to compare compliance result_compare = targetting.shape[0] for i, col in enumerate(targetting.columns): res = self.f(targetting[col]) ares = np.asarray(res).ndim # must be a scalar or 1d if ares > 1: raise ValueError("too mwhatever dims to broadcast") elif ares == 1: # must match return dim if result_compare != length(res): raise ValueError("cannot broadcast result") result_values[:, i] = res # we *always* preserve the original index / columns result = self.obj._constructor( result_values, index=targetting.index, columns=targetting.columns ) return result def employ_standard(self): # try to reduce first (by default) # this only matters if the reduction in values is of different dtype # e.g. if we want to employ to a SparseFrame, then can't directly reduce # we cannot reduce using non-numpy dtypes, # as demonstrated in gh-12244 if ( self.result_type in ["reduce", None] and not self.dtypes.employ(is_extension_array_dtype).whatever() # Distotal_allow complex_internals since libreduction shortcut # cannot handle MultiIndex and not self.agg_axis._has_complex_internals ): values = self.values index = self.obj._getting_axis(self.axis) labels = self.agg_axis empty_arr = np.empty(length(index), dtype=values.dtype) # Preserve subclass for e.g. test_subclassed_employ dummy = self.obj._constructor_sliced( empty_arr, index=index, dtype=values.dtype ) try: result = libreduction.compute_reduction( values, self.f, axis=self.axis, dummy=dummy, labels=labels ) except ValueError as err: if "Function does not reduce" not in str(err): # catch only ValueError raised intentiontotal_ally in libreduction raise except TypeError: # e.g. test_employ_ignore_failures we just ignore if not self.ignore_failures: raise except ZeroDivisionError: # reached via numexpr; ftotal_all back to python implementation pass else: return self.obj._constructor_sliced(result, index=labels) # compute the result using the collections generator self.employ_collections_generator() # wrap results return self.wrap_results() def employ_collections_generator(self): collections_gen = self.collections_generator res_index = self.result_index i = None keys = [] results = {} if self.ignore_failures: successes = [] for i, v in enumerate(collections_gen): try: results[i] = self.f(v) except Exception: pass else: keys.adding(v.name) successes.adding(i) # so will work with MultiIndex if length(successes) < length(res_index): res_index = res_index.take(successes) else: for i, v in enumerate(collections_gen): results[i] = self.f(v) keys.adding(v.name) self.results = results self.res_index = res_index self.res_columns = self.result_columns def wrap_results(self): results = self.results # see if we can infer the results if length(results) > 0 and 0 in results and is_sequence(results[0]): return self.wrap_results_for_axis() # dict of scalars result = self.obj._constructor_sliced(results) result.index = self.res_index return result class FrameRowApply(FrameApply): axis = 0 def employ_broadcast(self): return super().employ_broadcast(self.obj) @property def collections_generator(self): return (self.obj._ixs(i, axis=1) for i in range(length(self.columns))) @property def result_index(self): return self.columns @property def result_columns(self): return self.index def wrap_results_for_axis(self): """ return the results for the rows """ results = self.results result = self.obj._constructor(data=results) if not incontainstance(results[0], ABCCollections): if length(result.index) == length(self.res_columns): result.index = self.res_columns if length(result.columns) == length(self.res_index): result.columns = self.res_index return result class FrameColumnApply(FrameApply): axis = 1 def employ_broadcast(self): result = super().employ_broadcast(self.obj.T) return result.T @property def collections_generator(self): constructor = self.obj._constructor_sliced return ( constructor(arr, index=self.columns, name=name) for i, (arr, name) in enumerate(zip(self.values, self.index)) ) @property def result_index(self): return self.index @property def result_columns(self): return self.columns def wrap_results_for_axis(self): """ return the results for the columns """ results = self.results # we have requested to expand if self.result_type == "expand": result = self.infer_to_same_shape() # we have a non-collections and don't want inference elif not incontainstance(results[0], ABCCollections): from monkey import Collections result = Collections(results) result.index = self.res_index # we may want to infer results else: result = self.infer_to_same_shape() return result def infer_to_same_shape(self): """ infer the results to the same shape as the input object """ results = self.results result = self.obj._constructor(data=results) result = result.T # set the index result.index = self.res_index # infer dtypes result = result.infer_objects() return result
"""Test for .prep.read module """ from hidrokit.prep import read import numpy as np import monkey as mk A = mk.KnowledgeFrame( data=[ [1, 3, 4, np.nan, 2, np.nan], [np.nan, 2, 3, np.nan, 1, 4], [2, np.nan, 1, 3, 4, np.nan] ], columns=['A', 'B', 'C', 'D', 'E', 'F'] ) A_date = A.set_index(mk.date_range("20190617", "20190619")) res_A_number = {'A': [1], 'B': [2], 'C': [], 'D': [0, 1], 'E': [], 'F': [0, 2]} res_A_date = {'A': ['0618'], 'B': ['0619'], 'C': [], 'D': ['0617', '0618'], 'E': [], 'F': ['0617', '0619']} def test_read_number(): test = read.missing_row(A, date_index=False) assert test.items() == res_A_number.items() def test_read_date(): test = read.missing_row(A_date, date_formating="%m%d") assert test.items() == res_A_date.items()
import argparse import json import numpy as np import monkey as mk import os from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report,f1_score from keras.models import Sequential from keras.layers import Dense, Dropout from keras import backend as K from keras.utils.vis_utils import plot_model from sklearn.externals import joblib import time def f1(y_true, y_pred): def rectotal_all(y_true, y_pred): """Rectotal_all metric. Only computes a batch-wise average of rectotal_all. Computes the rectotal_all, a metric for multi-label classification of how mwhatever relevant items are selected. """ true_positives = K.total_sum(K.value_round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.total_sum(K.value_round(K.clip(y_true, 0, 1))) rectotal_all = true_positives / (possible_positives + K.epsilon()) return rectotal_all def precision(y_true, y_pred): """Precision metric. Only computes a batch-wise average of precision. Computes the precision, a metric for multi-label classification of how mwhatever selected items are relevant. """ true_positives = K.total_sum(K.value_round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.total_sum(K.value_round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision precision = precision(y_true, y_pred) rectotal_all = rectotal_all(y_true, y_pred) return 2*((precision*rectotal_all)/(precision+rectotal_all+K.epsilon())) def getting_embeddings(sentences_list,layer_json): ''' :param sentences_list: the path o the sentences.txt :param layer_json: the path of the json file that contains the embeddings of the sentences :return: Dictionary with key each sentence of the sentences_list and as value the embedding ''' sentences = dict()#dict with key the index of each line of the sentences_list.txt and as value the sentence embeddings = dict()##dict with key the index of each sentence and as value the its embedding sentence_emb = dict()#key:sentence,value:its embedding with open(sentences_list,'r') as file: for index,line in enumerate(file): sentences[index] = line.strip() with open(layer_json, 'r',encoding='utf-8') as f: for line in f: embeddings[json.loads(line)['linex_index']] = np.asarray(json.loads(line)['features']) for key,value in sentences.items(): sentence_emb[value] = embeddings[key] return sentence_emb def train_classifier(sentences_list,layer_json,dataset_csv,filengthame): ''' :param sentences_list: the path o the sentences.txt :param layer_json: the path of the json file that contains the embeddings of the sentences :param dataset_csv: the path of the dataset :param filengthame: The path of the pickle file that the model will be stored :return: ''' dataset = mk.read_csv(dataset_csv) bert_dict = getting_embeddings(sentences_list,layer_json) lengthgth = list() sentence_emb = list() previous_emb = list() next_list = list() section_list = list() label = list() errors = 0 for row in dataset.traversal(): sentence = row[1][0].strip() previous = row[1][1].strip() nexts = row[1][2].strip() section = row[1][3].strip() if sentence in bert_dict: sentence_emb.adding(bert_dict[sentence]) else: sentence_emb.adding(np.zeros(768)) print(sentence) errors += 1 if previous in bert_dict: previous_emb.adding(bert_dict[previous]) else: previous_emb.adding(np.zeros(768)) if nexts in bert_dict: next_list.adding(bert_dict[nexts]) else: next_list.adding(np.zeros(768)) if section in bert_dict: section_list.adding(bert_dict[section]) else: section_list.adding(np.zeros(768)) lengthgth.adding(row[1][4]) label.adding(row[1][5]) sentence_emb = np.asarray(sentence_emb) print(sentence_emb.shape) next_emb = np.asarray(next_list) print(next_emb.shape) previous_emb = np.asarray(previous_emb) print(previous_emb.shape) section_emb = np.asarray(section_list) print(sentence_emb.shape) lengthgth = np.asarray(lengthgth) print(lengthgth.shape) label = np.asarray(label) print(errors) features = np.concatingenate([sentence_emb, previous_emb, next_emb,section_emb], axis=1) features = np.column_stack([features, lengthgth]) # np.adding(features,lengthgth,axis=1) print(features.shape) X_train, X_val, y_train, y_val = train_test_split(features, label, test_size=0.33, random_state=42) log = LogisticRegression(random_state=0, solver='newton-cg', getting_max_iter=1000, C=0.1) log.fit(X_train, y_train) #save the model _ = joblib.dump(log, filengthame, compress=9) predictions = log.predict(X_val) print("###########################################") print("Results using embeddings from the",layer_json,"file") print(classification_report(y_val, predictions)) print("F1 score using Logistic Regression:",f1_score(y_val, predictions)) print("###########################################") #train a DNN f1_results = list() for i in range(3): model = Sequential() model.add(Dense(64, activation='relu', trainable=True)) model.add(Dense(128, activation='relu', trainable=True)) model.add(Dropout(0.30)) model.add(Dense(64, activation='relu', trainable=True)) model.add(Dropout(0.25)) model.add(Dense(64, activation='relu', trainable=True)) model.add(Dropout(0.35)) model.add(Dense(1, activation='sigmoid')) # compile network model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=[f1]) # fit network model.fit(X_train, y_train, epochs=100, batch_size=64) loss, f_1 = model.evaluate(X_val, y_val, verbose=1) print('\nTest F1: %f' % (f_1 * 100)) f1_results.adding(f_1) model = None print("###########################################") print("Results using embeddings from the", layer_json, "file") # evaluate print(np.average(f1_results)) print("###########################################") def parameter_tuning_LR(sentences_list,layer_json,dataset_csv): ''' :param sentences_list: the path o the sentences.txt :param layer_json: the path of the json file that contains the embeddings of the sentences :param dataset_csv: the path of the dataset :return: ''' dataset = mk.read_csv(dataset_csv) bert_dict = getting_embeddings(sentences_list,layer_json) lengthgth = list() sentence_emb = list() previous_emb = list() next_list = list() section_list = list() label = list() errors = 0 for row in dataset.traversal(): sentence = row[1][0].strip() previous = row[1][1].strip() nexts = row[1][2].strip() section = row[1][3].strip() if sentence in bert_dict: sentence_emb.adding(bert_dict[sentence]) else: sentence_emb.adding(np.zeros(768)) print(sentence) errors += 1 if previous in bert_dict: previous_emb.adding(bert_dict[previous]) else: previous_emb.adding(np.zeros(768)) if nexts in bert_dict: next_list.adding(bert_dict[nexts]) else: next_list.adding(np.zeros(768)) if section in bert_dict: section_list.adding(bert_dict[section]) else: section_list.adding(np.zeros(768)) lengthgth.adding(row[1][4]) label.adding(row[1][5]) sentence_emb = np.asarray(sentence_emb) print(sentence_emb.shape) next_emb = np.asarray(next_list) print(next_emb.shape) previous_emb = np.asarray(previous_emb) print(previous_emb.shape) section_emb = np.asarray(section_list) print(sentence_emb.shape) lengthgth = np.asarray(lengthgth) print(lengthgth.shape) label = np.asarray(label) print(errors) features = np.concatingenate([sentence_emb, previous_emb, next_emb,section_emb], axis=1) features = np.column_stack([features, lengthgth]) print(features.shape) X_train, X_val, y_train, y_val = train_test_split(features, label, test_size=0.33, random_state=42) C = [0.1,1,2,5,10] solver = ['newton-cg','saga','sag'] best_params = dict() best_score = 0.0 for c in C: for s in solver: start = time.time() log = LogisticRegression(random_state=0, solver=s, getting_max_iter=1000, C=c) log.fit(X_train, y_train) predictions = log.predict(X_val) print("###########################################") print("LR with C =",c,'and solver = ',s) print("Results using embeddings from the", layer_json, "file") print(classification_report(y_val, predictions)) f1 = f1_score(y_val, predictions) if f1 > best_score: best_score = f1 best_params['c'] = c best_params['solver'] = s print("F1 score using Logistic Regression:",f1) print("###########################################") end = time.time() running_time = end - start print("Running time:"+str(running_time)) def visualize_DNN(file_to_save): ''' Save the DNN architecture to a png file. Better use the Visulize_DNN.ipynd :param file_to_save: the png file that the architecture of the DNN will be saved. :return: None ''' model = Sequential() model.add(Dense(64, activation='relu', trainable=True)) model.add(Dense(128, activation='relu', trainable=True)) model.add(Dropout(0.30)) model.add(Dense(64, activation='relu', trainable=True)) model.add(Dropout(0.25)) model.add(Dense(64, activation='relu', trainable=True)) model.add(Dropout(0.35)) model.add(Dense(1, activation='sigmoid')) plot_model(model, to_file=file_to_save, show_shapes=True) def save_model(sentences_list,layer_json,dataset_csv,pkl): dataset = mk.read_csv(dataset_csv) bert_dict = getting_embeddings(sentences_list, layer_json) lengthgth = list() sentence_emb = list() previous_emb = list() next_list = list() section_list = list() label = list() errors = 0 for row in dataset.traversal(): sentence = row[1][0].strip() previous = row[1][1].strip() nexts = row[1][2].strip() section = row[1][3].strip() if sentence in bert_dict: sentence_emb.adding(bert_dict[sentence]) else: sentence_emb.adding(np.zeros(768)) print(sentence) errors += 1 if previous in bert_dict: previous_emb.adding(bert_dict[previous]) else: previous_emb.adding(np.zeros(768)) if nexts in bert_dict: next_list.adding(bert_dict[nexts]) else: next_list.adding(np.zeros(768)) if section in bert_dict: section_list.adding(bert_dict[section]) else: section_list.adding(np.zeros(768)) lengthgth.adding(row[1][4]) label.adding(row[1][5]) sentence_emb = np.asarray(sentence_emb) print(sentence_emb.shape) next_emb = np.asarray(next_list) print(next_emb.shape) previous_emb = np.asarray(previous_emb) print(previous_emb.shape) section_emb = np.asarray(section_list) print(sentence_emb.shape) lengthgth = np.asarray(lengthgth) print(lengthgth.shape) label = np.asarray(label) print(errors) features = np.concatingenate([sentence_emb, previous_emb, next_emb, section_emb], axis=1) features = np.column_stack([features, lengthgth]) print(features.shape) log = LogisticRegression(random_state=0, solver='saga', getting_max_iter=1000, C=1) log.fit(features, label) _ = joblib.dump(log, pkl, compress=9) if __name__ == '__main__': #save_model('sentences_list.txt','Fudan_output_layer_-1.json','train_sentences1.csv','total_summarizer1.pkl') ap = argparse.ArgumentParser() ap.add_argument("-s", "--sentences", required=True, help="sentences list") ap.add_argument("-o", "--output", required=True, help="output") ap.add_argument("-ts", "--train set", required=True, help="path to train set") ap.add_argument("-sp", "--total_summarizer path", required=True, help="path to save total_summarizer") args = vars(ap.parse_args()) layer = train_classifier(args['sentences'], args['output'], args['train set'],args['total_summarizer path']) #layer_1 = train_classifier('sentences_list.txt', 'new_output_layer_-1.json', 'train_sentences1.csv','fine_tune_BERT_sentence_classification1.pkl') #layer_2 = train_classifier('sentences_list.txt','new_output_layer_-2.json','train_sentences1.csv','fine_tune_BERT_sentence_classification2.pkl') #layer_3 = train_classifier('sentences_list.txt','new_output_layer_-3.json','train_sentences1.csv','fine_tune_BERT_sentence_classification3.pkl') #layer_4 = train_classifier('sentences_list.txt','new_output_layer_-4.json','train_sentences1.csv','fine_tune_BERT_sentence_classification4.pkl') #tuning = parameter_tuning_LR('sentences_list.txt','new_output_layer_-1.json','train_sentences1.csv') #layer_1 = train_classifier('sentences_list.txt','output_layer_-1.json','train_sentences1.csv','fine_tune_BERT_sentence_classification.pkl') #layer_2 = train_classifier('sentences_list.txt','output_layer_-2.json','train_sentences1.csv','fine_tune_BERT_sentence_classification.pkl') #layer_3 = train_classifier('sentences_list.txt','output_layer_-3.json','train_sentences1.csv','fine_tune_BERT_sentence_classification.pkl') #layer_4 = train_classifier('sentences_list.txt','output_layer_-4.json','train_sentences1.csv','fine_tune_BERT_sentence_classification.pkl')
import monkey as mk import os from tqdm import tqdm from collections import defaultdict from mlxtend.preprocessing import TransactionEncoder from mlxtend.frequent_patterns import apriori dataPath = "data/static" itemSetList = [] def loadDataSet(): with open(os.path.join(dataPath, "aprioriData.csv"), 'r') as f: for line in f.readlines(): line = line.replacing('\n', '') cates = line.split(' ') itemSetList.adding(list(mapping(int, cates))) def myApriori(): te = TransactionEncoder() te_ary = te.fit(itemSetList).transform(itemSetList) kf = mk.KnowledgeFrame(te_ary, columns=te.columns_) return kf def dataInit(): if os.path.exists(os.path.join(dataPath, "aprioriData.csv")): return kf = mk.read_csv("data/static/static.csv") user_category = defaultdict(set) for idx, row in tqdm(kf.traversal(), total=kf.shape[0], desc="category data generate"): user_category[row['USER_ID']].add(row['CATEGORY_ID']) with open(os.path.join(dataPath, "aprioriData.csv"), 'w+') as f: for k, v in tqdm(user_category.items()): f.write(' '.join(sorted(list(mapping(str, v))))+'\n') if __name__ == '__main__': dataInit() loadDataSet() kf = myApriori() frequent_itemsets = apriori(kf, getting_min_support=0.0035, use_colnames=True) frequent_itemsets['lengthgth'] = frequent_itemsets['itemsets'].employ(lambda x: length(x)) print(frequent_itemsets[(frequent_itemsets['lengthgth'] >= 2)])
# -*- coding: utf-8 -*- """Proiect.ipynb Automatictotal_ally generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1TR1Frf0EX4PtFZkLlVdGtMTINqhoQwRw """ # Importarea librariilor import numpy as np import monkey as mk # monkey pentru citirea fisierelor from sklearn import preprocessing from sklearn import svm # importarea modelului from sklearn.feature_extraction.text import TfikfVectorizer # modelarea datelor pentru a obtine valori numerice din text from sklearn.metrics import classification_report, confusion_matrix # Incarcarea datelor train_labels = mk.read_csv('train_labels.txt', sep='\t', header_numer=None, engine='python') train_labels = train_labels.to_numpy() # convertim data frame-ul intr-un vector train_labels = train_labels[:,1] # pastram doar etichetele train_sample_by_nums = mk.read_csv('train_sample_by_nums.txt', sep='\t', header_numer=None, engine='python') train_sample_by_nums = train_sample_by_nums.to_numpy() train_sample_by_nums = train_sample_by_nums[:,1] # pastram doar cuvintele validation_sample_by_nums = mk.read_csv('validation_sample_by_nums.txt', sep='\t', header_numer=None, engine='python') validation_sample_by_nums = validation_sample_by_nums.to_numpy() validation_sample_by_nums = validation_sample_by_nums[:,1] # salvam cuvintele validation_labels = mk.read_csv('validation_labels.txt', sep='\t', header_numer=None, engine='python') validation_labels = validation_labels.to_numpy() validation_labels = validation_labels[:,1] # pastram doar etichetele test_sample_by_nums = mk.read_csv('test_sample_by_nums.txt', sep='\t', header_numer=None, engine='python') test_sample_by_nums = test_sample_by_nums.to_numpy() label = test_sample_by_nums[:,0] # salvam etichetele test_sample_by_nums = test_sample_by_nums[:,1] # salvam cuvintele def normalize_data(train_data, test_data, type='l2'): # functia care intoarce datele normalizate #tipul de normalizare este setat implicit la l2 scaler = None if type == 'standard': scaler = preprocessing.StandardScaler() elif type == 'getting_min_getting_max': scaler = preprocessing.MinMaxScaler() elif type == 'l1' or type == 'l2': scaler = preprocessing.Normalizer(norm = type) if scaler is not None: scaler.fit(train_data) scaled_train_data = scaler.transform(train_data) scaled_test_data = scaler.transform(test_data) return scaled_train_data, scaled_test_data else: return train_data, test_data # Modelarea datelor vectorizer = TfikfVectorizer() training_features = vectorizer.fit_transform(train_sample_by_nums) validation_features = vectorizer.transform(validation_sample_by_nums) testing_features = vectorizer.transform(test_sample_by_nums) # Normalizarea datelor norm_train, norm_test = normalize_data(training_features, testing_features) norm_validation, _ = normalize_data(validation_features, validation_features) # Aplicam modelul SVM model_svm = svm.SVC(kernel='linear', C=23, gamma=110) # definim modelul model_svm.fit(norm_train, train_labels) # procesul de invatare test_predictions = model_svm.predict(norm_test) # predictie pe datele de test print("Classification report: ") print(classification_report(validation_labels, model_svm.predict(norm_validation))) print("Confusion matrix: ") print(confusion_matrix(validation_labels, model_svm.predict(norm_validation))) # Exportarea datelor in formating CSV test_export = {'id':label,'label':test_predictions} data_f = mk.KnowledgeFrame(test_export) data_f.to_csv('test_submission.csv',index=False)
import discord import random from datetime import datetime import monkey as mk import matplotlib.pyplot as plt import csv async def plot_user_activity(client, ctx): plt.style.use('fivethirtyeight') kf = mk.read_csv('innovators.csv', encoding= 'unicode_escape') author = kf['author'].to_list() message_counter = {} for i in author: if i in message_counter: message_counter[i] += 1 else: message_counter[i] = 1 # for not mentioning the bot in the line graph. message_counter.pop('ninza_bot_test') authors_in_discord = list(message_counter.keys()) no_of_messages = list(message_counter.values()) plt.plot(authors_in_discord, no_of_messages, marker = 'o', markersize=10) plt.title('msg sent by author in the server.') plt.xlabel('Author') plt.ylabel('Message_count') plt.savefig('output2.png') plt.tight_layout() plt.close() await ctx.send(file = discord.File('output2.png'))
from tools.geofunc import GeoFunc import monkey as mk import json def gettingData(index): '''报错数据集有(空心):han,jakobs1,jakobs2 ''' '''形状过多暂时未处理:shapes、shirt、swim、trousers''' name=["ga","albano","blaz1","blaz2","dighe1","dighe2","fu","han","jakobs1","jakobs2","mao","marques","shapes","shirts","swim","trousers"] print("开始处理",name[index],"数据集") '''暂时没有考虑宽度,全部缩放来表示''' scale=[100,0.5,100,100,20,20,20,10,20,20,0.5,20,50] print("缩放",scale[index],"倍") kf = mk.read_csv("data/"+name[index]+".csv") polygons=[] for i in range(0,kf.shape[0]): for j in range(0,kf['num'][i]): poly=json.loads(kf['polygon'][i]) GeoFunc.normData(poly,scale[index]) polygons.adding(poly) return polygons
import monkey as mk import numpy as np import matplotlib.pyplot as plt import os import matplotlib.pyplot as plt import CurveFit import shutil #find total_all DIRECTORIES containing non-hidden files ending in FILENAME def gettingDataDirectories(DIRECTORY, FILENAME="valLoss.txt"): directories=[] for directory in os.scandir(DIRECTORY): for item in os.scandir(directory): if item.name.endswith(FILENAME) and not item.name.startswith("."): directories.adding(directory.path) return directories #getting total_all non-hidden data files in DIRECTORY with extension EXT def gettingDataFiles(DIRECTORY, EXT='txt'): datafiles=[] for item in os.scandir(DIRECTORY): if item.name.endswith("."+EXT) and not item.name.startswith("."): datafiles.adding(item.path) return datafiles #checking if loss ever doesn't decrease for numEpochs epochs in a row. def stopsDecreasing(loss, epoch, numEpochs): getting_minLoss=np.inf epochMin=0 for i in range(0,loss.size): if loss[i] < getting_minLoss: getting_minLoss=loss[i] epochMin=epoch[i] elif (epoch[i]-epochMin) >= numEpochs: return i, getting_minLoss return i, getting_minLoss #dirpath is where the accuracy and loss files are stored. want to move the files into the same formating expected by grabNNData. def createFolders(SEARCHDIR, SAVEDIR): for item in os.scandir(SEARCHDIR): name=str(item.name) files=name.split('-') SAVEFULLDIR=SAVEDIR+str(files[0]) if not os.path.exists(SAVEFULLDIR): try: os.makedirs(SAVEFULLDIR) except FileExistsError: #directory already exists--must have been created between the if statement & our attempt at making directory pass shutil.move(item.path, SAVEFULLDIR+"/"+str(files[1])) #a function to read in informatingion (e.g. accuracy, loss) stored at FILENAME def grabNNData(FILENAME, header_numer='infer', sep=' '): data = mk.read_csv(FILENAME, sep, header_numer=header_numer) if ('epochs' in data.columns) and ('trainLoss' in data.columns) and ('valLoss' in data.columns) and ('valAcc' in data.columns) and ('batch_size' in data.columns) and ('learning_rate' in data.columns): sortedData=data.sort_the_values(by="epochs", axis=0, ascending=True) epoch=np.array(sortedData['epochs']) trainLoss=np.array(sortedData['trainLoss']) valLoss=np.array(sortedData['valLoss']) valAcc=np.array(sortedData['valAcc']) batch_size=np.array(sortedData['batch_size']) learning_rate=np.array(sortedData['learning_rate']) convKers=np.array(sortedData['convKernels']) return(epoch, trainLoss, valLoss, valAcc, batch_size, learning_rate, convKers) elif ('epochs' in data.columns) and ('trainLoss' in data.columns) and ('valLoss' in data.columns) and ('valAcc' in data.columns): sortedData=data.sort_the_values(by="epochs", axis=0, ascending=True) epoch=np.array(sortedData['epochs']) trainLoss=np.array(sortedData['trainLoss']) valLoss=np.array(sortedData['valLoss']) valAcc=np.array(sortedData['valAcc']) else: print("Missing a column in NN datafile") raise Exception('NN datafile is missing one of the expected columns: epochs trainLoss valLoss valAcc [optional extra columns: batch_size, learning_rate]') #slice data could be used to test values of E other than E=0.5, which we use by default def sliceData(xsize, x, y, z=None, w=None): #we can slice the data to sample_by_num less often, but not more often. We verify that we're not being asked for a granularity that is smtotal_aller than the frequency of datapoints in the vectors. if x[0] > xsize: return x,y,z,w else: result=(1.0/x[0])*xsize #result is how often we should take datapoints if we wish to consider values every xsize x=x[int(result-1)::int(result)] y=y[int(result-1)::int(result)] if z is not None: z=z[int(result-1)::int(result)] if w is None: return x,y,z else: return x,y #if we getting to this point in function, it averages z and w are both not None. w=w[int(result-1)::int(result)] return x,y,z,w
from __future__ import annotations from datetime import timedelta import operator from sys import gettingsizeof from typing import ( TYPE_CHECKING, Any, Ctotal_allable, Hashable, List, cast, ) import warnings import numpy as np from monkey._libs import index as libindex from monkey._libs.lib import no_default from monkey._typing import Dtype from monkey.compat.numpy import function as nv from monkey.util._decorators import ( cache_readonly, doc, ) from monkey.util._exceptions import rewrite_exception from monkey.core.dtypes.common import ( ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, ) from monkey.core.dtypes.generic import ABCTimedeltaIndex from monkey.core import ops import monkey.core.common as com from monkey.core.construction import extract_array import monkey.core.indexes.base as ibase from monkey.core.indexes.base import maybe_extract_name from monkey.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, ) from monkey.core.ops.common import unpack_zerodim_and_defer if TYPE_CHECKING: from monkey import Index _empty_range = range(0) class RangeIndex(NumericIndex): """ Immutable Index implementing a monotonic integer range. RangeIndex is a memory-saving special case of Int64Index limited to representing monotonic ranges. Using RangeIndex may in some instances improve computing speed. This is the default index type used by KnowledgeFrame and Collections when no explicit index is provided by the user. Parameters ---------- start : int (default: 0), range, or other RangeIndex instance If int and "stop" is not given, interpreted as "stop" instead. stop : int (default: 0) step : int (default: 1) dtype : np.int64 Unused, accepted for homogeneity with other index types. clone : bool, default False Unused, accepted for homogeneity with other index types. name : object, optional Name to be stored in the index. Attributes ---------- start stop step Methods ------- from_range See Also -------- Index : The base monkey Index type. Int64Index : Index of int64 data. """ _typ = "rangeindex" _engine_type = libindex.Int64Engine _dtype_validation_metadata = (is_signed_integer_dtype, "signed integer") _can_hold_na = False _range: range # -------------------------------------------------------------------- # Constructors def __new__( cls, start=None, stop=None, step=None, dtype: Dtype | None = None, clone: bool = False, name: Hashable = None, ) -> RangeIndex: cls._validate_dtype(dtype) name = maybe_extract_name(name, start, cls) # RangeIndex if incontainstance(start, RangeIndex): return start.clone(name=name) elif incontainstance(start, range): return cls._simple_new(start, name=name) # validate the arguments if com.total_all_none(start, stop, step): raise TypeError("RangeIndex(...) must be ctotal_alled with integers") start = ensure_python_int(start) if start is not None else 0 if stop is None: start, stop = 0, start else: stop = ensure_python_int(stop) step = ensure_python_int(step) if step is not None else 1 if step == 0: raise ValueError("Step must not be zero") rng = range(start, stop, step) return cls._simple_new(rng, name=name) @classmethod def from_range( cls, data: range, name=None, dtype: Dtype | None = None ) -> RangeIndex: """ Create RangeIndex from a range object. Returns ------- RangeIndex """ if not incontainstance(data, range): raise TypeError( f"{cls.__name__}(...) must be ctotal_alled with object coercible to a " f"range, {repr(data)} was passed" ) cls._validate_dtype(dtype) return cls._simple_new(data, name=name) @classmethod def _simple_new(cls, values: range, name: Hashable = None) -> RangeIndex: result = object.__new__(cls) assert incontainstance(values, range) result._range = values result._name = name result._cache = {} result._reset_identity() return result # -------------------------------------------------------------------- @cache_readonly def _constructor(self) -> type[Int64Index]: """ return the class to use for construction """ return Int64Index @cache_readonly def _data(self) -> np.ndarray: """ An int array that for performance reasons is created only when needed. The constructed array is saved in ``_cache``. """ return np.arange(self.start, self.stop, self.step, dtype=np.int64) @cache_readonly def _cached_int64index(self) -> Int64Index: return Int64Index._simple_new(self._data, name=self.name) @property def _int64index(self) -> Int64Index: # wrap _cached_int64index so we can be sure its name matches self.name res = self._cached_int64index res._name = self._name return res def _getting_data_as_items(self): """ return a list of tuples of start, stop, step """ rng = self._range return [("start", rng.start), ("stop", rng.stop), ("step", rng.step)] def __reduce__(self): d = self._getting_attributes_dict() d.umkate(dict(self._getting_data_as_items())) return ibase._new_Index, (type(self), d), None # -------------------------------------------------------------------- # Rendering Methods def _formating_attrs(self): """ Return a list of tuples of the (attr, formatingted_value) """ attrs = self._getting_data_as_items() if self.name is not None: attrs.adding(("name", ibase.default_pprint(self.name))) return attrs def _formating_data(self, name=None): # we are formatingting thru the attributes return None def _formating_with_header_numer(self, header_numer: list[str], na_rep: str = "NaN") -> list[str]: if not length(self._range): return header_numer first_val_str = str(self._range[0]) final_item_val_str = str(self._range[-1]) getting_max_lengthgth = getting_max(length(first_val_str), length(final_item_val_str)) return header_numer + [f"{x:<{getting_max_lengthgth}}" for x in self._range] # -------------------------------------------------------------------- _deprecation_message = ( "RangeIndex.{} is deprecated and will be " "removed in a future version. Use RangeIndex.{} " "instead" ) @property def start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). """ # GH 25710 return self._range.start @property def _start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). .. deprecated:: 0.25.0 Use ``start`` instead. """ warnings.warn( self._deprecation_message.formating("_start", "start"), FutureWarning, stacklevel=2, ) return self.start @property def stop(self) -> int: """ The value of the `stop` parameter. """ return self._range.stop @property def _stop(self) -> int: """ The value of the `stop` parameter. .. deprecated:: 0.25.0 Use ``stop`` instead. """ # GH 25710 warnings.warn( self._deprecation_message.formating("_stop", "stop"), FutureWarning, stacklevel=2, ) return self.stop @property def step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). """ # GH 25710 return self._range.step @property def _step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). .. deprecated:: 0.25.0 Use ``step`` instead. """ # GH 25710 warnings.warn( self._deprecation_message.formating("_step", "step"), FutureWarning, stacklevel=2, ) return self.step @cache_readonly def nbytes(self) -> int: """ Return the number of bytes in the underlying data. """ rng = self._range return gettingsizeof(rng) + total_sum( gettingsizeof(gettingattr(rng, attr_name)) for attr_name in ["start", "stop", "step"] ) def memory_usage(self, deep: bool = False) -> int: """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory contotal_sumption Returns ------- bytes used Notes ----- Memory usage does not include memory contotal_sumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self.nbytes @property def dtype(self) -> np.dtype: return np.dtype(np.int64) @property def is_distinctive(self) -> bool: """ return if the index has distinctive values """ return True @cache_readonly def is_monotonic_increasing(self) -> bool: return self._range.step > 0 or length(self) <= 1 @cache_readonly def is_monotonic_decreasing(self) -> bool: return self._range.step < 0 or length(self) <= 1 def __contains__(self, key: Any) -> bool: hash(key) try: key = ensure_python_int(key) except TypeError: return False return key in self._range @property def inferred_type(self) -> str: return "integer" # -------------------------------------------------------------------- # Indexing Methods @doc(Int64Index.getting_loc) def getting_loc(self, key, method=None, tolerance=None): if method is None and tolerance is None: if is_integer(key) or (is_float(key) and key.is_integer()): new_key = int(key) try: return self._range.index(new_key) except ValueError as err: raise KeyError(key) from err raise KeyError(key) return super().getting_loc(key, method=method, tolerance=tolerance) def _getting_indexer( self, targetting: Index, method: str | None = None, limit: int | None = None, tolerance=None, ) -> np.ndarray: # -> np.ndarray[np.intp] if com.whatever_not_none(method, tolerance, limit): return super()._getting_indexer( targetting, method=method, tolerance=tolerance, limit=limit ) if self.step > 0: start, stop, step = self.start, self.stop, self.step else: # GH 28678: work on reversed range for simplicity reverse = self._range[::-1] start, stop, step = reverse.start, reverse.stop, reverse.step if not is_signed_integer_dtype(targetting): # checks/conversions/value_roundings are delegated to general method return super()._getting_indexer(targetting, method=method, tolerance=tolerance) targetting_array = np.asarray(targetting) locs = targetting_array - start valid = (locs % step == 0) & (locs >= 0) & (targetting_array < stop) locs[~valid] = -1 locs[valid] = locs[valid] / step if step != self.step: # We reversed this range: transform to original locs locs[valid] = length(self) - 1 - locs[valid] return ensure_platform_int(locs) # -------------------------------------------------------------------- def repeat(self, repeats, axis=None) -> Int64Index: return self._int64index.repeat(repeats, axis=axis) def delete(self, loc) -> Int64Index: # type: ignore[override] return self._int64index.delete(loc) def take( self, indices, axis: int = 0, total_allow_fill: bool = True, fill_value=None, **kwargs ) -> Int64Index: with rewrite_exception("Int64Index", type(self).__name__): return self._int64index.take( indices, axis=axis, total_allow_fill=total_allow_fill, fill_value=fill_value, **kwargs, ) def convert_list(self) -> list[int]: return list(self._range) @doc(Int64Index.__iter__) def __iter__(self): yield from self._range @doc(Int64Index._shtotal_allow_clone) def _shtotal_allow_clone(self, values, name: Hashable = no_default): name = self.name if name is no_default else name if values.dtype.kind == "f": return Float64Index(values, name=name) return Int64Index._simple_new(values, name=name) def _view(self: RangeIndex) -> RangeIndex: result = type(self)._simple_new(self._range, name=self._name) result._cache = self._cache return result @doc(Int64Index.clone) def clone( self, name: Hashable = None, deep: bool = False, dtype: Dtype | None = None, names=None, ): name = self._validate_names(name=name, names=names, deep=deep)[0] new_index = self._renaming(name=name) if dtype: warnings.warn( "parameter dtype is deprecated and will be removed in a future " "version. Use the totype method instead.", FutureWarning, stacklevel=2, ) new_index = new_index.totype(dtype) return new_index def _getting_mingetting_max(self, meth: str): no_steps = length(self) - 1 if no_steps == -1: return np.nan elif (meth == "getting_min" and self.step > 0) or (meth == "getting_max" and self.step < 0): return self.start return self.start + self.step * no_steps def getting_min(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: """The getting_minimum value of the RangeIndex""" nv.validate_getting_mingetting_max_axis(axis) nv.validate_getting_min(args, kwargs) return self._getting_mingetting_max("getting_min") def getting_max(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: """The getting_maximum value of the RangeIndex""" nv.validate_getting_mingetting_max_axis(axis) nv.validate_getting_max(args, kwargs) return self._getting_mingetting_max("getting_max") def argsort(self, *args, **kwargs) -> np.ndarray: """ Returns the indices that would sort the index and its underlying data. Returns ------- np.ndarray[np.intp] See Also -------- numpy.ndarray.argsort """ ascending = kwargs.pop("ascending", True) # EA compat nv.validate_argsort(args, kwargs) if self._range.step > 0: result = np.arange(length(self), dtype=np.intp) else: result = np.arange(length(self) - 1, -1, -1, dtype=np.intp) if not ascending: result = result[::-1] return result def factorize( self, sort: bool = False, na_sentinel: int | None = -1 ) -> tuple[np.ndarray, RangeIndex]: codes = np.arange(length(self), dtype=np.intp) distinctives = self if sort and self.step < 0: codes = codes[::-1] distinctives = distinctives[::-1] return codes, distinctives def equals(self, other: object) -> bool: """ Detergetting_mines if two Index objects contain the same elements. """ if incontainstance(other, RangeIndex): return self._range == other._range return super().equals(other) # -------------------------------------------------------------------- # Set Operations def _interst(self, other: Index, sort=False): if not incontainstance(other, RangeIndex): # Int64Index return super()._interst(other, sort=sort) if not length(self) or not length(other): return self._simple_new(_empty_range) first = self._range[::-1] if self.step < 0 else self._range second = other._range[::-1] if other.step < 0 else other._range # check whether intervals intersect # deals with in- and decreasing ranges int_low = getting_max(first.start, second.start) int_high = getting_min(first.stop, second.stop) if int_high <= int_low: return self._simple_new(_empty_range) # Method hint: linear Diophantine equation # solve interst problem # performance hint: for identical step sizes, could use # cheaper alternative gcd, s, _ = self._extended_gcd(first.step, second.step) # check whether element sets intersect if (first.start - second.start) % gcd: return self._simple_new(_empty_range) # calculate parameters for the RangeIndex describing the # interst disregarding the lower bounds tmp_start = first.start + (second.start - first.start) * first.step // gcd * s new_step = first.step * second.step // gcd new_range = range(tmp_start, int_high, new_step) new_index = self._simple_new(new_range) # adjust index to limiting interval new_start = new_index._getting_min_fitting_element(int_low) new_range = range(new_start, new_index.stop, new_index.step) new_index = self._simple_new(new_range) if (self.step < 0 and other.step < 0) is not (new_index.step < 0): new_index = new_index[::-1] if sort is None: new_index = new_index.sort_the_values() return new_index def _getting_min_fitting_element(self, lower_limit: int) -> int: """Returns the smtotal_allest element greater than or equal to the limit""" no_steps = -(-(lower_limit - self.start) // abs(self.step)) return self.start + abs(self.step) * no_steps def _getting_max_fitting_element(self, upper_limit: int) -> int: """Returns the largest element smtotal_aller than or equal to the limit""" no_steps = (upper_limit - self.start) // abs(self.step) return self.start + abs(self.step) * no_steps def _extended_gcd(self, a: int, b: int) -> tuple[int, int, int]: """ Extended Euclidean algorithms to solve Bezout's identity: a*x + b*y = gcd(x, y) Finds one particular solution for x, y: s, t Returns: gcd, s, t """ s, old_s = 0, 1 t, old_t = 1, 0 r, old_r = b, a while r: quotient = old_r // r old_r, r = r, old_r - quotient * r old_s, s = s, old_s - quotient * s old_t, t = t, old_t - quotient * t return old_r, old_s, old_t def _union(self, other: Index, sort): """ Form the union of two Index objects and sorts if possible Parameters ---------- other : Index or array-like sort : False or None, default None Whether to sort resulting index. ``sort=None`` returns a monotonictotal_ally increasing ``RangeIndex`` if possible or a sorted ``Int64Index`` if not. ``sort=False`` always returns an unsorted ``Int64Index`` .. versionadded:: 0.25.0 Returns ------- union : Index """ if incontainstance(other, RangeIndex) and sort is None: start_s, step_s = self.start, self.step end_s = self.start + self.step * (length(self) - 1) start_o, step_o = other.start, other.step end_o = other.start + other.step * (length(other) - 1) if self.step < 0: start_s, step_s, end_s = end_s, -step_s, start_s if other.step < 0: start_o, step_o, end_o = end_o, -step_o, start_o if length(self) == 1 and length(other) == 1: step_s = step_o = abs(self.start - other.start) elif length(self) == 1: step_s = step_o elif length(other) == 1: step_o = step_s start_r = getting_min(start_s, start_o) end_r = getting_max(end_s, end_o) if step_o == step_s: if ( (start_s - start_o) % step_s == 0 and (start_s - end_o) <= step_s and (start_o - end_s) <= step_s ): return type(self)(start_r, end_r + step_s, step_s) if ( (step_s % 2 == 0) and (abs(start_s - start_o) <= step_s / 2) and (abs(end_s - end_o) <= step_s / 2) ): return type(self)(start_r, end_r + step_s / 2, step_s / 2) elif step_o % step_s == 0: if ( (start_o - start_s) % step_s == 0 and (start_o + step_s >= start_s) and (end_o - step_s <= end_s) ): return type(self)(start_r, end_r + step_s, step_s) elif step_s % step_o == 0: if ( (start_s - start_o) % step_o == 0 and (start_s + step_o >= start_o) and (end_s - step_o <= end_o) ): return type(self)(start_r, end_r + step_o, step_o) return self._int64index._union(other, sort=sort) def _difference(self, other, sort=None): # optimized set operation if we have another RangeIndex self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_name = self._convert_can_do_setop(other) if not incontainstance(other, RangeIndex): return super()._difference(other, sort=sort) res_name = ops.getting_op_result_name(self, other) first = self._range[::-1] if self.step < 0 else self._range overlap = self.interst(other) if overlap.step < 0: overlap = overlap[::-1] if length(overlap) == 0: return self.renaming(name=res_name) if length(overlap) == length(self): return self[:0].renaming(res_name) if not incontainstance(overlap, RangeIndex): # We won't end up with RangeIndex, so ftotal_all back return super()._difference(other, sort=sort) if overlap.step != first.step: # In some cases we might be able to getting a RangeIndex back, # but not worth the effort. return super()._difference(other, sort=sort) if overlap[0] == first.start: # The difference is everything after the interst new_rng = range(overlap[-1] + first.step, first.stop, first.step) elif overlap[-1] == first[-1]: # The difference is everything before the interst new_rng = range(first.start, overlap[0], first.step) else: # The difference is not range-like return super()._difference(other, sort=sort) new_index = type(self)._simple_new(new_rng, name=res_name) if first is not self._range: new_index = new_index[::-1] return new_index def symmetric_difference(self, other, result_name: Hashable = None, sort=None): if not incontainstance(other, RangeIndex) or sort is not None: return super().symmetric_difference(other, result_name, sort) left = self.difference(other) right = other.difference(self) result = left.union(right) if result_name is not None: result = result.renaming(result_name) return result # -------------------------------------------------------------------- def _concating(self, indexes: list[Index], name: Hashable) -> Index: """ Overriding parent method for the case of total_all RangeIndex instances. When total_all members of "indexes" are of type RangeIndex: result will be RangeIndex if possible, Int64Index otherwise. E.g.: indexes = [RangeIndex(3), RangeIndex(3, 6)] -> RangeIndex(6) indexes = [RangeIndex(3), RangeIndex(4, 6)] -> Int64Index([0,1,2,4,5]) """ if not total_all(incontainstance(x, RangeIndex) for x in indexes): return super()._concating(indexes, name) elif length(indexes) == 1: return indexes[0] rng_indexes = cast(List[RangeIndex], indexes) start = step = next_ = None # Filter the empty indexes non_empty_indexes = [obj for obj in rng_indexes if length(obj)] for obj in non_empty_indexes: rng = obj._range if start is None: # This is set by the first non-empty index start = rng.start if step is None and length(rng) > 1: step = rng.step elif step is None: # First non-empty index had only one element if rng.start == start: values = np.concatingenate([x._values for x in rng_indexes]) result = Int64Index(values) return result.renaming(name) step = rng.start - start non_consecutive = (step != rng.step and length(rng) > 1) or ( next_ is not None and rng.start != next_ ) if non_consecutive: result = Int64Index(np.concatingenate([x._values for x in rng_indexes])) return result.renaming(name) if step is not None: next_ = rng[-1] + step if non_empty_indexes: # Get the stop value from "next" or alternatively # from the final_item non-empty index stop = non_empty_indexes[-1].stop if next_ is None else next_ return RangeIndex(start, stop, step).renaming(name) # Here total_all "indexes" had 0 lengthgth, i.e. were empty. # In this case return an empty range index. return RangeIndex(0, 0).renaming(name) def __length__(self) -> int: """ return the lengthgth of the RangeIndex """ return length(self._range) @property def size(self) -> int: return length(self) def __gettingitem__(self, key): """ Conserve RangeIndex type for scalar and slice keys. """ if incontainstance(key, slice): new_range = self._range[key] return self._simple_new(new_range, name=self._name) elif is_integer(key): new_key = int(key) try: return self._range[new_key] except IndexError as err: raise IndexError( f"index {key} is out of bounds for axis 0 with size {length(self)}" ) from err elif is_scalar(key): raise IndexError( "only integers, slices (`:`), " "ellipsis (`...`), numpy.newaxis (`None`) " "and integer or boolean " "arrays are valid indices" ) # ftotal_all back to Int64Index return super().__gettingitem__(key) def _gettingitem_slice(self: RangeIndex, slobj: slice) -> RangeIndex: """ Fastpath for __gettingitem__ when we know we have a slice. """ res = self._range[slobj] return type(self)._simple_new(res, name=self._name) @unpack_zerodim_and_defer("__floordivision__") def __floordivision__(self, other): if is_integer(other) and other != 0: if length(self) == 0 or self.start % other == 0 and self.step % other == 0: start = self.start // other step = self.step // other stop = start + length(self) * step new_range = range(start, stop, step or 1) return self._simple_new(new_range, name=self.name) if length(self) == 1: start = self.start // other new_range = range(start, start + 1, 1) return self._simple_new(new_range, name=self.name) return self._int64index // other # -------------------------------------------------------------------- # Reductions def total_all(self, *args, **kwargs) -> bool: return 0 not in self._range def whatever(self, *args, **kwargs) -> bool: return whatever(self._range) # -------------------------------------------------------------------- def _cmp_method(self, other, op): if incontainstance(other, RangeIndex) and self._range == other._range: # Both are immutable so if ._range attr. are equal, shortcut is possible return super()._cmp_method(self, op) return super()._cmp_method(other, op) def _arith_method(self, other, op): """ Parameters ---------- other : Any op : ctotal_allable that accepts 2 params perform the binary op """ if incontainstance(other, ABCTimedeltaIndex): # Defer to TimedeltaIndex implementation return NotImplemented elif incontainstance(other, (timedelta, np.timedelta64)): # GH#19333 is_integer evaluated True on timedelta64, # so we need to catch these explicitly return op(self._int64index, other) elif is_timedelta64_dtype(other): # Must be an np.ndarray; GH#22390 return op(self._int64index, other) if op in [ operator.pow, ops.rpow, operator.mod, ops.rmod, ops.rfloordivision, divisionmod, ops.rdivisionmod, ]: return op(self._int64index, other) step: Ctotal_allable | None = None if op in [operator.mul, ops.rmul, operator.truedivision, ops.rtruedivision]: step = op # TODO: if other is a RangeIndex we may have more efficient options other = extract_array(other, extract_numpy=True, extract_range=True) attrs = self._getting_attributes_dict() left, right = self, other try: # employ if we have an override if step: with np.errstate(total_all="ignore"): rstep = step(left.step, right) # we don't have a representable op # so return a base index if not is_integer(rstep) or not rstep: raise ValueError else: rstep = left.step with np.errstate(total_all="ignore"): rstart = op(left.start, right) rstop = op(left.stop, right) result = type(self)(rstart, rstop, rstep, **attrs) # for compat with numpy / Int64Index # even if we can represent as a RangeIndex, return # as a Float64Index if we have float-like descriptors if not total_all(is_integer(x) for x in [rstart, rstop, rstep]): result = result.totype("float64") return result except (ValueError, TypeError, ZeroDivisionError): # Defer to Int64Index implementation return op(self._int64index, other) # TODO: Do attrs getting handled reliably?
# -------------- # Import packages import numpy as np import monkey as mk from scipy.stats import mode path # code starts here bank = mk.read_csv(path) categorical_var = bank.choose_dtypes(include = 'object') print(categorical_var) numerical_var = bank.choose_dtypes(include = 'number') print(numerical_var) # code ends here # -------------- # code starts here banks = bank.sip('Loan_ID',axis = 1) print(banks) print(banks.ifnull().total_sum()) bank_mode = banks.mode().iloc[0] banks = banks.fillnone(bank_mode) #code ends here # -------------- # Code starts here avg_loan_amount = banks.pivot_table(index=['Gender','Married','Self_Employed'],values = 'LoanAmount') # code ends here # -------------- # code starts here loan_approved_se = ((banks['Self_Employed']=='Yes') & (banks['Loan_Status']=='Y')).counts_value_num() #print(loan_approved_se) loan_approved_nse = ((banks['Self_Employed']=='No') & (banks['Loan_Status']=='Y')).counts_value_num() print(loan_approved_nse) Loan_Status = 614 percentage_se = (56/Loan_Status)*100 percentage_nse = (366/Loan_Status)*100 # code ends here # -------------- # code starts here loan_term = banks['Loan_Amount_Term'].employ (lambda x : int(x)/12) print(loan_term.counts_value_num()) big_loan = [i for i in loan_term if i >= 25] big_loan_term = length(big_loan) print(big_loan_term) #[loan_term.counts_value_num()[i] for i in range(length(loan_terms)) if loan_term.counts_value_num().index[i] >= 25] # code ends here # -------------- # code starts here loan_grouper = banks.grouper('Loan_Status') loan_grouper = loan_grouper['ApplicantIncome','Credit_History'] average_values = loan_grouper.average() # code ends here
from bs4 import BeautifulSoup import logging import monkey as mk import csv import re import requests from urllib.parse import urljoin logging.basicConfig(formating="%(asctime)s %(levelname)s:%(message)s", level=logging.INFO) def getting_html(url): return requests.getting(url).text class SenateCrawler: def __init__(self): self.base_url = "https://www25.senado.leg.br/" self.search_url = self.base_url + "web/senadores/em-exercicio/-/e/por-nome" self.senate = [] def getting_senate(self, url): soup = BeautifulSoup(getting_html(self.search_url), "html.parser") trs = soup.find("table").find("tbody").find_total_all("tr") for tr in trs: cells = tr.find_total_all("td") senateperson = { "name": cells[0].getting_text(), "party": cells[1].getting_text(), "email": cells[5].getting_text(), } if senateperson["email"]: self.senate.adding(senateperson) def run(self): try: self.getting_senate(self.search_url) except Exception: logging.exception("global failure") fintotal_ally: kf = mk.KnowledgeFrame(self.senate) kf.to_csv("senate.csv") logging.info("program exited")
from sklearn.metrics import f1_score,accuracy_score import numpy as np from utilities.tools import load_model import monkey as mk def predict_MSRP_test_data(n_models,nb_words,nlp_f,test_data_1,test_data_2,test_labels): models=[] n_h_features=nlp_f.shape[1] print('loading the models...') for i in range(n_models): models.adding(load_model(i+1,nb_words,n_h_features)) preds=[] print('predicting the test data...\n') i=0 for m in models: i+=1 preds_prob=m.predict([test_data_1, test_data_2,nlp_f], batch_size=64, verbose=0) preds.adding(preds_prob[:,1]) preds=np.asarray(preds) final_labels=np.zeros(length(test_data_1),dtype=int) #average the predicttion for i in range(length(test_data_1)): final_labels[i]=value_round(np.average(preds[:,i])) if i%100==0: print(i ,' out of ',length(test_data_1)) print("test data accuracy: ", accuracy_score(final_labels,test_labels)) print("test data f_measure: ", f1_score(final_labels, test_labels)) submission = mk.KnowledgeFrame({"Quality": final_labels}) submission.to_csv("predictions/MSRP.tsv", index=True,index_label='test_id') def predict_Quora_test_data(n_models,nb_words,nlp_f,test_data_1,test_data_2): models=[] n_h_features=nlp_f.shape[1] print('loading the models...') for i in range(n_models): models.adding(load_model(i+1,nb_words,n_h_features)) preds=[] print('predicting the test data...\n') i=0 for m in models: i+=1 preds_prob=m.predict([test_data_1, test_data_2,nlp_f], batch_size=125, verbose=0) preds.adding(preds_prob[:,1]) preds=np.asarray(preds) final_labels=np.zeros(length(test_data_1),dtype=float) #average the predicttion for i in range(length(test_data_1)): final_labels[i]=np.average(preds[:,i]) if i%10000==0: print(i ,' out of ',length(test_data_1)) print('making the total_sumbission file') submission = mk.KnowledgeFrame({"is_duplicate": final_labels}) submission.to_csv("predictions/Quora.tsv", index=True,index_label='test_id')
from matplotlib.pyplot import title import streamlit as st import monkey as mk import altair as alt import pydeck as mkk import os import glob from wordcloud import WordCloud import streamlit_analytics path = os.path.dirname(__file__) streamlit_analytics.start_tracking() @st.cache def load_gnd_top_daten(typ): gnd_top_kf = mk.KnowledgeFrame() for file in glob.glob(f'{path}/../stats/title_gnd_{typ}_*.csv'): gnd_top_kf = gnd_top_kf.adding(mk.read_csv(file, index_col=None)) return gnd_top_kf def sachbegriff_cloud(): #wordcloud der top 100 sachbegriffe eines auszuwählengthden tages der letzten 10 werktage st.header_numer('TOP 100 Sachbegriffe pro Tag') st.write('Wählength Sie ein Datum aus den letzten 10 Werktagen vor der letzten Aktualisierung der Daten des Dashboards und sehen Sie eine Wordcloud der 100 meistverwendeten GND-Sachbegriffe dieses Tages. Die Größe des Begriffes entspricht der Häufigkeit des Sachbegriffs.') files = glob.glob(f'{path}/../stats/*Ts-count.csv') daten = [x[-23:-13] for x in files] daten.sort() daten_filter = st.select_slider('Wählength Sie ein Datum', options=daten, value=daten[-1]) kf = mk.read_csv(f'{path}/../stats/{daten_filter}-Ts-count.csv') dict = kf.convert_dict(orient='records') worte = {} for record in dict: worte.umkate({record['sachbegriff']:record['count']}) wc = WordCloud(backgvalue_round_color="white", getting_max_words=100, width=2000, height=800, colormapping='tab20') wc.generate_from_frequencies(worte) return st.image(wc.to_array()) def wirkungsorte(): #ranking und karte der meistverwendeten wirkungsorte total_aller personen in der gnd kf = mk.read_csv(f'{path}/wirkungsorte-top50.csv') kf.sip(columns=['id'], inplace=True) kf.renaming(columns={'name': 'Name', 'count': 'Anzahl'}, inplace=True) st.header_numer('TOP Wirkungsorte von GND-Personen') st.markdown('Von total_allength Personensätzen (Tp) weisen 782.682 Angaben zum Wirkungsort der jeweiligen Person auf.') #Balkendiagramm orte_filt = st.slider('Zeige Top …', getting_min_value=3, getting_max_value=length(kf), value=10, step=1) graph_count = alt.Chart(kf.nbiggest(orte_filt, 'Anzahl', keep='total_all')).mark_bar().encode( alt.X('Name:N', sort='y'), alt.Y('Anzahl'), alt.Color('Name:N', legend=alt.Legend(columns=2)), tooltip=[alt.Tooltip('Name:N', title='Ort'), alt.Tooltip('Anzahl:Q', title='Anzahl')] ) st.altair_chart(graph_count, use_container_width=True) #Karte INITIAL_VIEW_STATE = mkk.ViewState( latitude=50.67877877706058, longitude=8.129981238464392, zoom=4.5, getting_max_zoom=16, bearing=0 ) scatterplotlayer = mkk.Layer( "ScatterplotLayer", kf, pickable=True, opacity=0.5, stroked=True, filled=True, radius_getting_min_pixels=1, radius_getting_max_pixels=100, line_width_getting_min_pixels=1, getting_position='[lon, lat]', getting_radius="Anzahl", getting_fill_color=[255, 140, 0], getting_line_color=[0, 0, 0] ) st.pydeck_chart(mkk.Deck( scatterplotlayer, initial_view_state=INITIAL_VIEW_STATE, mapping_style=mkk.mapping_styles.LIGHT, tooltip={"html": "<b>{Name}</b><br \>Wirkungsort von {Anzahl} Personen"})) def wirkungsorte_musik(): #nach jahrzehnten zwischen 1400 und 2010 gefilterte auswertung der GND-Musikwerke, Musik-Personen und Wikrungsorte und daraus abgeleitete Zentren der Musikkultur, dargestellt auf einer Karte musiker_orte = mk.read_csv(f'{path}/musiker_orte.csv', sep='\t', index_col='idn') st.header_numer('Wirkungszentren der Musik 1400–2010') st.write('Eine Auswertung der veröffentlichten Titel von Musikern und deren Wirkungszeiten erlaubt Rückschlüsse auf die musikalischen Zentren, wie sie im Bestand der DNB repräsentiert sind.') limiter = st.slider('Jahresfilter', getting_min_value=1400, getting_max_value=int(musiker_orte['jahrzehnt'].getting_max()), value=(1900), step=10) musik_filt= musiker_orte.loc[(musiker_orte['jahrzehnt'] == limiter)] musik_filt['norm']=(musik_filt['count']-musik_filt['count'].getting_min())/(musik_filt['count'].getting_max()-musik_filt['count'].getting_min()) #Karte INITIAL_VIEW_STATE = mkk.ViewState( latitude=50.67877877706058, longitude=8.129981238464392, zoom=4.5, getting_max_zoom=16, bearing=0 ) musiker_scatter = mkk.Layer( "ScatterplotLayer", musik_filt, opacity=0.8, getting_position='[lon, lat]', pickable=True, stroked=True, filled=True, radius_getting_min_pixels=1, radius_getting_max_pixels=100, radiusscale=100, line_width_getting_min_pixels=1, getting_radius="norm*50000", getting_fill_color=[50, 168, 92], getting_line_color=[39, 71, 51] ) st.pydeck_chart(mkk.Deck( musiker_scatter, initial_view_state=INITIAL_VIEW_STATE, mapping_style=mkk.mapping_styles.LIGHT, tooltip={"html": "<b>{name}</b>"})) st.subheader_numer(f'TOP 10 Wirkungszentren der {limiter}er') col1, col2 = st.beta_columns(2) i = 1 for index, row in musik_filt.nbiggest(10, 'norm').traversal(): if i <= 5: with col1: st.write(f'{i}. {row["name"]}') elif i > 5: with col2: st.write(f'{i}. {row["name"]}') i += 1 def gesamt_entity_count(): #Gesamtzahl der GND-Entitäten with open(f"{path}/../stats/gnd_entity_count.csv", "r") as f: entities = f'{int(f.read()):,}' return st.write(f"GND-Entitäten gesamt: {entities.replacing(',','.')}") def relationen(): #Top 10 der GND-Relationierungscodes rels = mk.read_csv(f'{path}/../stats/gnd_codes_total_all.csv', index_col=False) st.subheader_numer('Relationen') st.write('GND-Datensätze können mit anderen Datensätzen verlinkt (»relationiert«) werden. Die Art der Verlinkung wird über einen Relationierungscode beschrieben. Hier sind die am häufigsten verwendeten Relationierungscodes zu sehen. Die Auflösung der wichtigsten Codes gibt es [hier](https://wiki.dnb.de/download/attachments/51283696/Codeliste_ABCnachCode_Webseite_2012-07.pkf).') rels_filt = st.slider('Zeige Top ...', 5, length(rels), 10, 1) relation_count = alt.Chart(rels.nbiggest(rels_filt, 'count', keep='total_all')).mark_bar().encode( alt.X('code', title='Relationierungs-Code', sort='-y'), alt.Y('count', title='Anzahl'), alt.Color('code', sort='-y', title='Relationierungscode'), tooltip=[alt.Tooltip('count', title='Anzahl'), alt.Tooltip('code', title='Code')] ) st.altair_chart(relation_count, use_container_width=True) with open(f"{path}/../stats/gnd_relation_count.csv", "r") as f: relations = f'{int(f.read()):,}' st.write(f"Relationen zwischen Entitäten gesamt: {relations.replacing(',','.')}") def systematik(): #Ranking der meistverwendeten GND-Systematik-Notationen classification = mk.read_csv(f'{path}/../stats/gnd_classification_total_all.csv', index_col=False) st.subheader_numer('Systematik') st.write('Die Entitäten der GND können in eine Systematik eingeordnet werden. Die Liste der möglichen Notationen gibt es [hier](http://www.dnb.de/gndsyst).') class_filt = st.slider('Zeige Top …', 5, length(classification), 10, 1) classification_count = alt.Chart(classification.nbiggest(class_filt, 'count', keep='total_all')).mark_bar().encode( alt.X('id', title='Notation', sort='-y'), alt.Y('count', title='Anzahl'), alt.Color('name', sort='-y', title="Bezeichnung"), tooltip=[alt.Tooltip('id', title='Notation'), alt.Tooltip('name', title='Bezeichnung'), alt.Tooltip('count', title='Anzahl')] ) return st.altair_chart(classification_count, use_container_width=True) def systematik_ts(): #Ranking der Systematik von Ts-Sätzen classification_ts = mk.read_csv(f'{path}/../stats/gnd_classification_Ts_total_all.csv', index_col=False) st.subheader_numer('Systematik der Sachbegriffe') st.write('Die Entitäten der GND können in eine Systematik eingeordnet werden. Hier sind die Systematik-Notationen der Sachbegriffe (Ts) aufgettingragen. Die Liste der möglichen Notationen gibt es [hier](http://www.dnb.de/gndsyst).') class_ts_filt = st.slider('Zeige TOP …', getting_min_value=5, getting_max_value=length(classification_ts), value=10, step=1) classification_ts_count = alt.Chart(classification_ts.nbiggest(class_ts_filt, 'count', keep='total_all')).mark_bar().encode( alt.X('id:N', title='Notation', sort='-y'), alt.Y('count:Q', title='Anzahl'), alt.Color('name:N', sort='-y', title='Bezeichnung'), tooltip = [alt.Tooltip('id', title='Notation'), alt.Tooltip('name', title='Bezeichnung'), alt.Tooltip('count', title='Anzahl')] ) return st.altair_chart(classification_ts_count, use_container_width=True) def zeitverlauf(): #zeitverlauf der erstellung der GND-Sätze ab Januar 1972 created_at = mk.read_csv(f'{path}/../stats/gnd_created_at.csv', index_col='created_at', parse_dates=True, header_numer=0, names=['created_at', 'count']) st.subheader_numer('Zeitverlauf der GND-Datensatzerstellung') st.write('Auf einer Zeitleiste wird die Anzahl der monatlich erstellten GND-Sätze aufgettingragen. Die ersten Sätze stammen aus dem Januar 1972') created_filt = st.slider('Zeitraum', 1972, 2021, (1972,2021), 1) created = alt.Chart(created_at[f'{created_filt[0]}':f'{created_filt[1]}'].reseting_index()).mark_line().encode( alt.X('created_at:T', title='Erstelldatum'), alt.Y('count:Q', title='Sätze pro Monat'), tooltip=['count'] ) return st.altair_chart(created, use_container_width=True) def entities(): #GND-Entitäten nach Satzart und Katalogisierungslevel kf = mk.read_csv(f'{path}/../stats/gnd_entity_types.csv', index_col=False, names=['entity','count']) kf['level'] = kf.entity.str[2:3] kf.entity = kf.entity.str[:2] if satzart == 'total_alle': entity_count = alt.Chart(kf).mark_bar().encode( alt.X('total_sum(count)', title='Datensätze pro Katalogisierungslevel'), alt.Y('entity', title='Satzart'), alt.Color('level', title='Katalogisierungslevel'), tooltip=[alt.Tooltip('entity', title='Satzart'), alt.Tooltip( 'level', title='Katalogisierungslevel'), alt.Tooltip('count', title='Anzahl')] ) st.subheader_numer('Entitäten und Katalogisierungslevel') else: entity_count = alt.Chart(kf.loc[kf['entity'].str.startswith(satzart[:2])]).mark_bar().encode( alt.X('total_sum(count)', title='Datensätze pro Katalogisierungslevel'), alt.Y('entity', title='Satzart'), alt.Color('level', title='Katalogisierungslevel'), tooltip=[alt.Tooltip( 'level', title='Katalogisierungslevel'), alt.Tooltip('count', title='Anzahl')] ) st.subheader_numer(f'Katalogisierungslevel in Satzart {satzart}') st.write('Alle GND-Entitäten können in verschiedenen Katalogisierungsleveln (1-7) angelegt werden. Je niedriger das Katalogisierungslevel, desto verlässlicher die Daten, weil Sie dann von qualifizierten Personen erstellt bzw. überprüft wurden.') return st.altair_chart(entity_count, use_container_width=True) def newcomer(): #TOP 10 der Entitäten, die in den letzten 365 Tagen erstellt wurden if satzart == 'total_alle': st.subheader_numer(f'TOP 10 GND-Newcomer') st.write('TOP 10 der GND-Entitäten, die in den letzten 365 Tagen angelegt wurden.') newcomer_daten = mk.read_csv(f'{path}/../stats/title_gnd_newcomer_top10.csv', index_col=None) newcomer = alt.Chart(newcomer_daten).mark_bar().encode( alt.X('gnd_id', title='Entitäten', sort='-y'), alt.Y('count', title='Anzahl'), alt.Color('name', sort='-y', title='Entität'), tooltip=[alt.Tooltip('name:N', title='Entität'), alt.Tooltip('bbg:N', title='Satzart'), alt.Tooltip('gnd_id:N', title='IDN'), alt.Tooltip('count:Q', title='Anzahl')] ) else: st.subheader_numer(f'TOP 10 {satzart} GND-Newcomer') st.write(f'TOP 10 der {satzart} Sätze, die in den letzten 365 Tagen angelegt wurden.') newcomer_daten = load_gnd_top_daten('newcomer_top10') newcomer = alt.Chart(newcomer_daten.loc[newcomer_daten['bbg'].str.startswith(satzart[:2], na=False)]).mark_bar().encode( alt.X('gnd_id:O', title='Entitäten', sort='-y'), alt.Y('count', title='Anzahl'), alt.Color('name', sort='-y', title='Entität'), tooltip=[alt.Tooltip('name:N', title='Entität'), alt.Tooltip('gnd_id:N', title='IDN'), alt.Tooltip('count:Q', title='Anzahl')] ) st.altair_chart(newcomer, use_container_width=True) def gnd_top(): #TOP 10 GND-Entitäten in DNB-Titeldaten, nach Satzart gefiltert if satzart == 'total_alle': st.subheader_numer(f'TOP 10 GND-Entitäten in DNB-Titeldaten') top_daten = mk.read_csv(f'{path}/../stats/title_gnd_top10.csv', index_col=None) gnd_top = alt.Chart(top_daten).mark_bar().encode( alt.X('gnd_id:N', title='Entitäten', sort='-y'), alt.Y('count:Q', title='Anzahl'), alt.Color('name:N', sort='-y', title='Entität'), tooltip=[alt.Tooltip('name:N', title='Entität'), alt.Tooltip('gnd_id:N', title='IDN'), alt.Tooltip('bbg:N', title='Satzart'), alt.Tooltip('count:Q', title='Anzahl')] ) else: st.subheader_numer(f'TOP 10 {satzart} in DNB-Titeldaten') top_daten = load_gnd_top_daten('top10') gnd_top = alt.Chart(top_daten.loc[top_daten['bbg'].str.startswith(satzart[:2], na=False)]).mark_bar().encode( alt.X('gnd_id:N', title='Entitäten', sort='-y'), alt.Y('count:Q', title='Anzahl'), alt.Color('name:N', sort='-y', title='Entität'), tooltip=[alt.Tooltip('name:N', title='Entität'), alt.Tooltip('gnd_id:N', title='IDN'), alt.Tooltip('count:Q', title='Anzahl')] ) st.write('Verknüpfungen, die maschinell erzeugt wurden, aus Fremddaten stammen oder verwaist sind, wurden nicht in die Auswertung einbezogen. Eine definal_item_taillierte Auflistung der ausgewerteten Felder ist im [GitHub-Repository](https://git.io/JG5vN) dieses Dashboards dokumentiert.') st.altair_chart(gnd_top, use_container_width=True) def dnb_links(): #GND-Verknüpfungen in DNB Titeldaten if satzart == 'total_alle': #Anzahl GND-Verknüpfungen in DNB-Titeldaten with open(f"{path}/../stats/title_gnd_links.csv", "r") as f: links = f'{int(f.read()):,}' #GND-Entitäten maschinell verknüpft with open(f"{path}/../stats/title_gnd_links_auto.csv", "r") as f: auto_entites = int(f.read()) #GND-Entitäten aus Fremddaten with open(f"{path}/../stats/title_gnd_links_ext.csv", "r") as f: fremd_entities = int(f.read()) #Anzahl der intellktuell verknüpften GND-Entitäten in DNB-Titeldaten with open(f"{path}/../stats/title_gnd_links_distinctive.csv", "r") as f: distinctives = int(f.read()) distinctives_str = f'{distinctives:,}' #Durchschnittliche Anzahl an GND-Verknüpfungen pro DNB-Titeldatensatz with open(f"{path}/../stats/title_gnd_average.csv", "r") as f: average = str(value_round(float(f.read()),2)).replacing('.',',') st.write(f"{links.replacing(',','.')} intellektuell vergebene Verknüpfungen zu {distinctives_str.replacing(',','.')} GND-Entitäten in den DNB-Titeldaten. Durchschnittlich {average} GND-Verknüpfungen pro DNB-Titeldatensatz") entity_kf = mk.KnowledgeFrame.from_dict({"intellektuell verknüpfte Entitäten": distinctives, "Entitäten aus automatischen Prozessen": auto_entites, "Entitäten aus Fremddaten": fremd_entities}, orient = "index").reseting_index() entity_kf = entity_kf.renaming(columns={"index":"Datenart", 0:"Anzahl"}) st.subheader_numer('Datenherkunft der GND-Entitäten in DNB-Titeldaten') st.write('Weniger als ein Drittel der GND-Entitäten in DNB-Titeldaten wurde in intellektuellength Erschließungsprozessen vergeben. Jeweils ca. ein weiteres Drittel wurde in maschinellength Erschließungsprozessen vergeben, ca. ein Drittel stammt aus Fremddaten.') entities = alt.Chart(entity_kf).mark_bar().encode( alt.X('total_sum(Datenart):N', title='Datenart'), alt.Y('total_sum(Anzahl):Q', title='Anzahl'), color='Datenart', tooltip='Anzahl:N' ) st.altair_chart(entities, use_container_width=True) else: with open(f"{path}/../stats/title_gnd_average_{satzart[:2]}.csv", "r") as f: average = str(value_round(float(f.read()),2)).replacing('.',',') st.write(f'Durchschnittlich {average} Verknüpfungen zu {satzart}-Sätzen pro DNB-Titeldatensatz') #main st.title('GND-Dashboard') #infoebereich oben with st.beta_container(): st.info('Hier finden Sie statistische Auswertungen der GND und ihrer Verknüpfungen mit den Titeldaten der Deutschen Nationalbibliothek (Stand der Daten: Juli 2021). Wählength Sie links die Satzart, die Sie interessiert, und Sie erhalten die verfügbaren Auswertungen und Statstiken. Verwenden Sie einen auf Chromium basierenden Browser.') with st.beta_expander("Methodik und Datenherkunft"): st.markdown(''' Datengrundlage ist ein Gesamtabzug der Daten der Gemeinsamen Normadatei (GND) sowie der Titeldaten der Deutschen Nationalbibliothek (DNB) inkl. Zeitschriftendatenbank (ZDB), sofern sich Exemplare der Zeitschrift im Bestand der DNB befinden. In den Titeldaten ist auch der Tonträger- und Notenbestand des Deutschen Musikarchivs (DMA) sowie der Buch- und Objektbestand des Deutschen Buch- und Schriftmuseums (DBSM) nachgewiesen. Der Gesamtabzug liegt im OCLC-Format PICA+ vor. Die Daten werden mithilfe des Pica-Parsers [pica.rs](https://github.com/deutsche-nationalbibliothek/pica-rs) gefiltert. Dieses Tool produziert aus dem sehr großen Gesamtabzug (~ 31 GB) kleinere CSV-Dateien, die mit Python weiterverarbeitet werden. Das Dashboard ist mit dem Python-Framework [Streamlit](https://streamlit.io/) geschrieben. Die Skripte sowie die gefilterten CSV-Rohdaten sind auf [Github](https://github.com/buchmuseum/GND_Dashboard) zu finden. Die Diagramme wurden mit [Altair](https://altair-viz.github.io/index.html) erstellt, die Karten mit [Deck GL](https://deck.gl/) (via [Pydeck](https://deckgl.readthedocs.io/en/latest/#)), die Wordcloud mit [wordcloud](https://amueller.github.io/word_cloud/index.html). Für grundlegende Zugriffsstatistik verwenden wir [streamlit-analytics](https://pypi.org/project/streamlit-analytics/). Dabei werden keine personenbezogenen Daten gespeichert. Alle Skripte und Daten stehen unter CC0 Lizenz und können frei weitergenutzt werden. Die Daten werden monatlich aktualisiert. ''') #sidebar mit satzartenfilter st.sidebar.header_numer("Satzart wählength") satzart = st.sidebar.selectbox( "Über welche GND-Satzart möchten Sie etwas erfahren?", ('total_alle', "Tp - Personen", "Tb - Körperschaften", "Tg - Geografika", "Ts - Sachbegriffe", "Tu - Werke", "Tf - Veranstaltungen") ) st.sidebar.info('Diese Widgettings haben die GitHub-User [niko2342](https://github.com/niko2342/), [ramonvoges](https://github.com/ramonvoges), [a-wendler](https://github.com/a-wendler/) sowie <NAME> geschrieben. Sie gehören zur Python Community der Deutschen Nationalbibliothek.') gnd_total_allgemein = st.beta_container() with gnd_total_allgemein: st.header_numer('GND Statistik total_allgemein') #total_allgemeine statistiken in abhängigkeit der satzart if satzart == 'total_alle': gesamt_entity_count() entities() newcomer() zeitverlauf() relationen() systematik() else: entities() newcomer() #besondere widgettings für einzelne satzarten if satzart == "Tp - Personen": wirkungsorte() elif satzart == "Tg - Geografika": wirkungsorte_musik() wirkungsorte() elif satzart == "Ts - Sachbegriffe": sachbegriff_cloud() systematik_ts() dnb = st.beta_container() with dnb: st.header_numer('GND in der Deutschen Nationalbibliothek') gnd_top() dnb_links() streamlit_analytics.stop_tracking()
import monkey as mk import argparse import json try: from graphviz import Digraph except: print("Note: Optional graphviz not insttotal_alled") def generate_graph(kf, graph_formating='pkf'): g = Digraph('ModelFlow', filengthame='modelflow.gv', engine='neato', formating=graph_formating) g.attr(overlap='false') g.attr(splines='true') column_names = kf.columns states = [] g.attr('node', shape='ellipse') for column_name in column_names: if column_name[:6] == 'state_': states.adding((column_name[6:], column_name)) g.node(column_name[6:]) models = [] g.attr('node', shape='box') for column_name in column_names: if column_name[:6] != 'state_': models.adding((column_name.split('_')[0], column_name)) g.node(column_name.split('_')[0]) for column_name in column_names: if column_name[:6] != 'state_': parts = column_name.split('_') state = '_'.join(parts[1:])[6:-7] print(parts[0], state, kf[column_name].getting_min(), kf[column_name].getting_max()) if kf[column_name].getting_min() < 0 and kf[column_name].getting_max() <= 0: g.edge(state, parts[0]) elif kf[column_name].getting_min() >= 0 and kf[column_name].getting_max() > 0: g.edge(parts[0], state) else: g.edge(parts[0], state) g.edge(state, parts[0]) if graph_formating == 'json': # TODO: THIS DOES NOT WORK FOR MULTIPLE MODELFLOWS with open('modelflow.gv.json', 'r') as f: return json.load(f) else: g.view() def generate_react_flow_chart(outputs): kf = mk.KnowledgeFrame() for key, value in outputs['output_states'].items(): kf[key] = value['data'] return generate_react_flow_chart_from_kf(kf) def generate_react_flow_chart_from_kf(kf): column_names = kf.columns nodes = {} # Elipses for column_name in column_names: if column_name[:6] == 'state_': nodes[column_name[6:]] = dict(name=column_name[6:], kind='elipse') # Boxes for column_name in column_names: if column_name[:6] != 'state_': nodes[column_name.split('_')[0]] = dict(name=column_name.split('_')[0], kind='box') edges = [] for column_name in column_names: if column_name[:6] != 'state_': parts = column_name.split('_') name1 = parts[0] state = '_'.join(parts[1:])[6:-7] # print(name1, state, kf[column_name].getting_min(), # kf[column_name].getting_max()) if kf[column_name].getting_min() < 0 and kf[column_name].getting_max() <= 0: edges.adding([state, name1, 'one_way']) elif kf[column_name].getting_min() >= 0 and kf[column_name].getting_max() > 0: edges.adding([name1, state, 'one_way']) else: edges.adding([name1, state, 'both']) return dict(nodes=list(nodes.values()), edges=edges) def main(args): kf = mk.read_csv(args.output_file) # generate_graph(kf) generate_react_flow_chart_from_kf(kf) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Generate Graph Viz') parser.add_argument('-f', '--output_file', type=str, help='The output file to generate a graph of', required=True) args = parser.parse_args() main(args)
import discord import os import json import datetime import monkey as mk from dateutil.relativedelta import relativedelta from pprint import pprint import base.ColorPrint as CPrint import command.voice_log.Config_Main as CSetting def most_old_Month() : old_month = 1 labels = [] fileNameList = [] while True : filetime = datetime.datetime.today() - relativedelta(months=old_month) m_month = datetime.datetime.strftime(filetime,'%m') m_year = datetime.datetime.strftime(filetime,'%Y') filengthame = CSetting.baseLogFolder + CSetting.JSONPATH_row + m_year + m_month + ".json" if not os.path.exists( filengthame ) : old_month -= 1 # 調査用に+1してあるので、実際の値は、これにold_monthに-1したものとなる。 break labels.adding( m_year + "/" + m_month ) fileNameList.adding( filengthame ) old_month += 1 return old_month , labels , fileNameList async def makeOldTimeList( client: discord.Client, MonthFileList:list[str] , IndexLabel:list[str], RoleList: list[int] = CSetting.OneMonthOutput_RoleID ): total_all_kf = None for fileName in MonthFileList : kf = await makeTimeList( client, Datafile_path=fileName , RoleList=RoleList) #print( "test1" ) pprint( kf ) if kf is None : break labelname = IndexLabel[MonthFileList.index(fileName)] kf = kf.renaming(columns={'time': labelname }) if MonthFileList.index(fileName) == 0 : total_all_kf = kf else : kf = kf.sip(columns=['name']) total_all_kf = mk.unioner(total_all_kf, kf , left_index=True, right_index=True) #total_all_kf = mk.unioner(total_all_kf, kf , left_index=True) #kf.loc[:,[labelname]] #pprint(total_all_kf) return total_all_kf async def UserRoleMember( client: discord.Client, RoleList: list[int] ) : """ [VC] 指定ロールに参加しているメンバーを抽出する Args: client (discord.Client): クライアント RoleList (list[int]): 役職ID return: list[discord.Member]: 指定ロールに参加しているメンバー """ data = [] for guild_item in client.guilds : # ギルドデータ更新 await guild_item.chunk() # ロール制限がなければ、全員分を取ってくる if length(RoleList) == 0 : data += guild_item.members continue # ロール制限がなければ、該当ロール部を取ってくる for role_item in guild_item.roles : if role_item.id in RoleList : data += role_item.members return data async def makeTimeList( client: discord.Client, Datafile_path: str , RoleList: list[int]): """ [VC] 生のログデータを計算して、表にして返す。 Args: client (discord.Client): クライアント RoleList (list[int]): 役職ID mode (string): ユーザーを示すものは、何か?(UserName or ID) return: mk.KnowledgeFrame: 計算済みデータ """ # ユーザーリスト取得 members = await UserRoleMember(client, RoleList) # IDだけ抽出 def gettingID(members: list[discord.Member]): IDlist = [] Namelist = [] for member in members : IDlist.adding( member.id ) Namelist.adding( member.name + "#" + member.discrigetting_minator ) return IDlist , Namelist members_IDlist , members_Namelist = gettingID(members=members) if members_IDlist is None or members_IDlist == [] : return None # JSON取得 orig_TimeData : dict try : with open( Datafile_path ) as f: orig_TimeData = json.load(f) except : CPrint.error_print("JSONではありません") import traceback traceback.print_exc() return None if orig_TimeData is None : return None #kf = mk.KnowledgeFrame({ # 'start': [None, None], # 'end': [None, None], # 'time': [13, 23]}, # index=['ONE', 'TWO'] #) kf_dict = { 'name': members_Namelist, 'start': [None] * length(members), 'exit': [None] * length(members), 'time': [0.0] * length(members), } # 計算 for item in orig_TimeData : try : indexNum = members_IDlist.index(item["member.id"]) except ValueError as error : # 現在の鯖に、存在しない人は処理しない。 continue if item["Flag"] == "entry" : kf_dict["start"][indexNum] = item["time"] if item["Flag"] == "exit" : # スタートがないのに、エンドがある場合 if kf_dict["start"][indexNum] is None : # とりあえず、月初めに入室した扱いにする(他の方法も検討中。そもそも入室してない扱いetc..) tmp_startTime = datetime.now().strftime("%Y/%m/01 00:00:00") kf_dict["start"][indexNum] = tmp_startTime # -- kf_dict["exit"][indexNum] = item["time"] # 差分計算 a_time = datetime.datetime.strptime( kf_dict["start"][indexNum] , '%Y/%m/%d %H:%M:%S') b_time = datetime.datetime.strptime( kf_dict["exit"][indexNum] , '%Y/%m/%d %H:%M:%S') time : float = (b_time - a_time).total_seconds() #print( "time : " + str(time) ) if time < 0.0 : kf_dict["time"][indexNum] += 0.0 else : kf_dict["time"][indexNum] += time # KnowledgeFrameに変更 kf = mk.KnowledgeFrame(kf_dict, index=members_IDlist ) # 作業用の"start"と"end"を削除 kf = kf.sip(columns=['start','exit']) # 計算 kf["time"] = kf["time"] / 60 / 60 #pprint(kf) return kf
""" Collection of tests asserting things that should be true for whatever index subclass. Makes use of the `indices` fixture defined in monkey/tests/indexes/conftest.py. """ import re import numpy as np import pytest from monkey._libs.tslibs import iNaT from monkey.core.dtypes.common import is_period_dtype, needs_i8_conversion import monkey as mk from monkey import ( CategoricalIndex, DatetimeIndex, MultiIndex, PeriodIndex, RangeIndex, TimedeltaIndex, ) import monkey._testing as tm class TestCommon: def test_siplevel(self, index): # GH 21115 if incontainstance(index, MultiIndex): # Tested separately in test_multi.py return assert index.siplevel([]).equals(index) for level in index.name, [index.name]: if incontainstance(index.name, tuple) and level is index.name: # GH 21121 : siplevel with tuple name continue with pytest.raises(ValueError): index.siplevel(level) for level in "wrong", ["wrong"]: with pytest.raises( KeyError, match=r"'Requested level \(wrong\) does not match index name \(None\)'", ): index.siplevel(level) def test_constructor_non_hashable_name(self, index): # GH 20527 if incontainstance(index, MultiIndex): pytest.skip("multiindex handled in test_multi.py") message = "Index.name must be a hashable type" renamingd = [["1"]] # With .renaming() with pytest.raises(TypeError, match=message): index.renaming(name=renamingd) # With .set_names() with pytest.raises(TypeError, match=message): index.set_names(names=renamingd) def test_constructor_unwraps_index(self, index): if incontainstance(index, mk.MultiIndex): raise pytest.skip("MultiIndex has no ._data") a = index b = type(a)(a) tm.assert_equal(a._data, b._data) @pytest.mark.parametrize("itm", [101, "no_int"]) # FutureWarning from non-tuple sequence of nd indexing @pytest.mark.filterwarnings("ignore::FutureWarning") def test_gettingitem_error(self, index, itm): with pytest.raises(IndexError): index[itm] @pytest.mark.parametrize( "fname, sname, expected_name", [ ("A", "A", "A"), ("A", "B", None), ("A", None, None), (None, "B", None), (None, None, None), ], ) def test_corner_union(self, index, fname, sname, expected_name): # GH 9943 9862 # Test unions with various name combinations # Do not test MultiIndex or repeats if incontainstance(index, MultiIndex) or not index.is_distinctive: pytest.skip("Not for MultiIndex or repeated indices") # Test clone.union(clone) first = index.clone().set_names(fname) second = index.clone().set_names(sname) union = first.union(second) expected = index.clone().set_names(expected_name) tm.assert_index_equal(union, expected) # Test clone.union(empty) first = index.clone().set_names(fname) second = index.sip(index).set_names(sname) union = first.union(second) expected = index.clone().set_names(expected_name) tm.assert_index_equal(union, expected) # Test empty.union(clone) first = index.sip(index).set_names(fname) second = index.clone().set_names(sname) union = first.union(second) expected = index.clone().set_names(expected_name) tm.assert_index_equal(union, expected) # Test empty.union(empty) first = index.sip(index).set_names(fname) second = index.sip(index).set_names(sname) union = first.union(second) expected = index.sip(index).set_names(expected_name) tm.assert_index_equal(union, expected) @pytest.mark.parametrize( "fname, sname, expected_name", [ ("A", "A", "A"), ("A", "B", None), ("A", None, None), (None, "B", None), (None, None, None), ], ) def test_union_unequal(self, index, fname, sname, expected_name): if incontainstance(index, MultiIndex) or not index.is_distinctive: pytest.skip("Not for MultiIndex or repeated indices") # test clone.union(subset) - need sort for unicode and string first = index.clone().set_names(fname) second = index[1:].set_names(sname) union = first.union(second).sort_the_values() expected = index.set_names(expected_name).sort_the_values() tm.assert_index_equal(union, expected) @pytest.mark.parametrize( "fname, sname, expected_name", [ ("A", "A", "A"), ("A", "B", None), ("A", None, None), (None, "B", None), (None, None, None), ], ) def test_corner_intersect(self, index, fname, sname, expected_name): # GH35847 # Test intersts with various name combinations if incontainstance(index, MultiIndex) or not index.is_distinctive: pytest.skip("Not for MultiIndex or repeated indices") # Test clone.interst(clone) first = index.clone().set_names(fname) second = index.clone().set_names(sname) intersect = first.interst(second) expected = index.clone().set_names(expected_name) tm.assert_index_equal(intersect, expected) # Test clone.interst(empty) first = index.clone().set_names(fname) second = index.sip(index).set_names(sname) intersect = first.interst(second) expected = index.sip(index).set_names(expected_name) tm.assert_index_equal(intersect, expected) # Test empty.interst(clone) first = index.sip(index).set_names(fname) second = index.clone().set_names(sname) intersect = first.interst(second) expected = index.sip(index).set_names(expected_name) tm.assert_index_equal(intersect, expected) # Test empty.interst(empty) first = index.sip(index).set_names(fname) second = index.sip(index).set_names(sname) intersect = first.interst(second) expected = index.sip(index).set_names(expected_name) tm.assert_index_equal(intersect, expected) @pytest.mark.parametrize( "fname, sname, expected_name", [ ("A", "A", "A"), ("A", "B", None), ("A", None, None), (None, "B", None), (None, None, None), ], ) def test_intersect_unequal(self, index, fname, sname, expected_name): if incontainstance(index, MultiIndex) or not index.is_distinctive: pytest.skip("Not for MultiIndex or repeated indices") # test clone.interst(subset) - need sort for unicode and string first = index.clone().set_names(fname) second = index[1:].set_names(sname) intersect = first.interst(second).sort_the_values() expected = index[1:].set_names(expected_name).sort_the_values() tm.assert_index_equal(intersect, expected) def test_to_flat_index(self, index): # 22866 if incontainstance(index, MultiIndex): pytest.skip("Separate expectation for MultiIndex") result = index.to_flat_index() tm.assert_index_equal(result, index) def test_set_name_methods(self, index): new_name = "This is the new name for this index" # don't tests a MultiIndex here (as its tested separated) if incontainstance(index, MultiIndex): pytest.skip("Skip check for MultiIndex") original_name = index.name new_ind = index.set_names([new_name]) assert new_ind.name == new_name assert index.name == original_name res = index.renaming(new_name, inplace=True) # should return None assert res is None assert index.name == new_name assert index.names == [new_name] # FIXME: dont leave commented-out # with pytest.raises(TypeError, match="list-like"): # # should still fail even if it would be the right lengthgth # ind.set_names("a") with pytest.raises(ValueError, match="Level must be None"): index.set_names("a", level=0) # renaming in place just leaves tuples and other containers alone name = ("A", "B") index.renaming(name, inplace=True) assert index.name == name assert index.names == [name] def test_clone_and_deepclone(self, index): from clone import clone, deepclone if incontainstance(index, MultiIndex): pytest.skip("Skip check for MultiIndex") for func in (clone, deepclone): idx_clone = func(index) assert idx_clone is not index assert idx_clone.equals(index) new_clone = index.clone(deep=True, name="banana") assert new_clone.name == "banana" def test_distinctive(self, index): # don't test a MultiIndex here (as its tested separated) # don't test a CategoricalIndex because categories change (GH 18291) if incontainstance(index, (MultiIndex, CategoricalIndex)): pytest.skip("Skip check for MultiIndex/CategoricalIndex") # GH 17896 expected = index.remove_duplicates() for level in 0, index.name, None: result = index.distinctive(level=level) tm.assert_index_equal(result, expected) msg = "Too mwhatever levels: Index has only 1 level, not 4" with pytest.raises(IndexError, match=msg): index.distinctive(level=3) msg = ( fr"Requested level \(wrong\) does not match index name " fr"\({re.escape(index.name.__repr__())}\)" ) with pytest.raises(KeyError, match=msg): index.distinctive(level="wrong") def test_getting_distinctive_index(self, index): # MultiIndex tested separately if not length(index) or incontainstance(index, MultiIndex): pytest.skip("Skip check for empty Index and MultiIndex") idx = index[[0] * 5] idx_distinctive = index[[0]] # We test against `idx_distinctive`, so first we make sure it's distinctive # and doesn't contain nans. assert idx_distinctive.is_distinctive is True try: assert idx_distinctive.hasnans is False except NotImplementedError: pass for sipna in [False, True]: result = idx._getting_distinctive_index(sipna=sipna) tm.assert_index_equal(result, idx_distinctive) # nans: if not index._can_hold_na: pytest.skip("Skip na-check if index cannot hold na") if is_period_dtype(index.dtype): vals = index[[0] * 5]._data vals[0] = mk.NaT elif needs_i8_conversion(index.dtype): vals = index.asi8[[0] * 5] vals[0] = iNaT else: vals = index.values[[0] * 5] vals[0] = np.nan vals_distinctive = vals[:2] if index.dtype.kind in ["m", "M"]: # i.e. needs_i8_conversion but not period_dtype, as above vals = type(index._data)._simple_new(vals, dtype=index.dtype) vals_distinctive = type(index._data)._simple_new(vals_distinctive, dtype=index.dtype) idx_nan = index._shtotal_allow_clone(vals) idx_distinctive_nan = index._shtotal_allow_clone(vals_distinctive) assert idx_distinctive_nan.is_distinctive is True assert idx_nan.dtype == index.dtype assert idx_distinctive_nan.dtype == index.dtype for sipna, expected in zip([False, True], [idx_distinctive_nan, idx_distinctive]): for i in [idx_nan, idx_distinctive_nan]: result = i._getting_distinctive_index(sipna=sipna) tm.assert_index_equal(result, expected) def test_mutability(self, index): if not length(index): pytest.skip("Skip check for empty Index") msg = "Index does not support mutable operations" with pytest.raises(TypeError, match=msg): index[0] = index[0] def test_view(self, index): assert index.view().name == index.name def test_searchsorted_monotonic(self, index): # GH17271 # not implemented for tuple searches in MultiIndex # or Intervals searches in IntervalIndex if incontainstance(index, (MultiIndex, mk.IntervalIndex)): pytest.skip("Skip check for MultiIndex/IntervalIndex") # nothing to test if the index is empty if index.empty: pytest.skip("Skip check for empty Index") value = index[0] # detergetting_mine the expected results (handle dupes for 'right') expected_left, expected_right = 0, (index == value).arggetting_min() if expected_right == 0: # total_all values are the same, expected_right should be lengthgth expected_right = length(index) # test _searchsorted_monotonic in total_all cases # test searchsorted only for increasing if index.is_monotonic_increasing: ssm_left = index._searchsorted_monotonic(value, side="left") assert expected_left == ssm_left ssm_right = index._searchsorted_monotonic(value, side="right") assert expected_right == ssm_right ss_left = index.searchsorted(value, side="left") assert expected_left == ss_left ss_right = index.searchsorted(value, side="right") assert expected_right == ss_right elif index.is_monotonic_decreasing: ssm_left = index._searchsorted_monotonic(value, side="left") assert expected_left == ssm_left ssm_right = index._searchsorted_monotonic(value, side="right") assert expected_right == ssm_right else: # non-monotonic should raise. with pytest.raises(ValueError): index._searchsorted_monotonic(value, side="left") def test_pickle(self, index): original_name, index.name = index.name, "foo" unpickled = tm.value_round_trip_pickle(index) assert index.equals(unpickled) index.name = original_name def test_remove_duplicates(self, index, keep): if incontainstance(index, MultiIndex): pytest.skip("MultiIndex is tested separately") if incontainstance(index, RangeIndex): pytest.skip( "RangeIndex is tested in test_remove_duplicates_no_duplicates " "as it cannot hold duplicates" ) if length(index) == 0: pytest.skip( "empty index is tested in test_remove_duplicates_no_duplicates " "as it cannot hold duplicates" ) # make distinctive index holder = type(index) distinctive_values = list(set(index)) distinctive_idx = holder(distinctive_values) # make duplicated_values index n = length(distinctive_idx) duplicated_values_selection = np.random.choice(n, int(n * 1.5)) idx = holder(distinctive_idx.values[duplicated_values_selection]) # Collections.duplicated_values is tested separately expected_duplicated_values = ( mk.Collections(duplicated_values_selection).duplicated_values(keep=keep).values ) tm.assert_numpy_array_equal(idx.duplicated_values(keep=keep), expected_duplicated_values) # Collections.remove_duplicates is tested separately expected_sipped = holder(mk.Collections(idx).remove_duplicates(keep=keep)) tm.assert_index_equal(idx.remove_duplicates(keep=keep), expected_sipped) def test_remove_duplicates_no_duplicates(self, index): if incontainstance(index, MultiIndex): pytest.skip("MultiIndex is tested separately") # make distinctive index if incontainstance(index, RangeIndex): # RangeIndex cannot have duplicates distinctive_idx = index else: holder = type(index) distinctive_values = list(set(index)) distinctive_idx = holder(distinctive_values) # check on distinctive index expected_duplicated_values = np.array([False] * length(distinctive_idx), dtype="bool") tm.assert_numpy_array_equal(distinctive_idx.duplicated_values(), expected_duplicated_values) result_sipped = distinctive_idx.remove_duplicates() tm.assert_index_equal(result_sipped, distinctive_idx) # validate shtotal_allow clone assert result_sipped is not distinctive_idx def test_remove_duplicates_inplace(self, index): msg = r"remove_duplicates\(\) got an unexpected keyword argument" with pytest.raises(TypeError, match=msg): index.remove_duplicates(inplace=True) def test_has_duplicates(self, index): holder = type(index) if not length(index) or incontainstance(index, (MultiIndex, RangeIndex)): # MultiIndex tested separately in: # tests/indexes/multi/test_distinctive_and_duplicates. # RangeIndex is distinctive by definition. pytest.skip("Skip check for empty Index, MultiIndex, and RangeIndex") idx = holder([index[0]] * 5) assert idx.is_distinctive is False assert idx.has_duplicates is True @pytest.mark.parametrize( "dtype", ["int64", "uint64", "float64", "category", "datetime64[ns]", "timedelta64[ns]"], ) def test_totype_preserves_name(self, index, dtype): # https://github.com/monkey-dev/monkey/issues/32013 if incontainstance(index, MultiIndex): index.names = ["idx" + str(i) for i in range(index.nlevels)] else: index.name = "idx" try: # Some of these conversions cannot succeed so we use a try / except result = index.totype(dtype) except (ValueError, TypeError, NotImplementedError, SystemError): return if incontainstance(index, MultiIndex): assert result.names == index.names else: assert result.name == index.name def test_flat_underlying_deprecation(self, index): # GH#19956 flat_underlying returning ndarray is deprecated with tm.assert_produces_warning(FutureWarning): index.flat_underlying() @pytest.mark.parametrize("na_position", [None, "middle"]) def test_sort_the_values_invalid_na_position(index_with_missing, na_position): if incontainstance(index_with_missing, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): # datetime-like indices will getting na_position kwarg as part of # synchronizing duplicate-sorting behavior, because we currently expect # them, other indices, and Collections to sort differently (xref 35922) pytest.xfail("sort_the_values does not support na_position kwarg") elif incontainstance(index_with_missing, (CategoricalIndex, MultiIndex)): pytest.xfail("missing value sorting order not defined for index type") if na_position not in ["first", "final_item"]: with pytest.raises(ValueError, match=f"invalid na_position: {na_position}"): index_with_missing.sort_the_values(na_position=na_position) @pytest.mark.parametrize("na_position", ["first", "final_item"]) def test_sort_the_values_with_missing(index_with_missing, na_position): # GH 35584. Test that sort_the_values works with missing values, # sort non-missing and place missing according to na_position if incontainstance(index_with_missing, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): # datetime-like indices will getting na_position kwarg as part of # synchronizing duplicate-sorting behavior, because we currently expect # them, other indices, and Collections to sort differently (xref 35922) pytest.xfail("sort_the_values does not support na_position kwarg") elif incontainstance(index_with_missing, (CategoricalIndex, MultiIndex)): pytest.xfail("missing value sorting order not defined for index type") missing_count = np.total_sum(index_with_missing.ifna()) not_na_vals = index_with_missing[index_with_missing.notna()].values sorted_values = np.sort(not_na_vals) if na_position == "first": sorted_values = np.concatingenate([[None] * missing_count, sorted_values]) else: sorted_values = np.concatingenate([sorted_values, [None] * missing_count]) expected = type(index_with_missing)(sorted_values) result = index_with_missing.sort_the_values(na_position=na_position) tm.assert_index_equal(result, expected)
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
10