Datasets:
The dataset viewer is not available for this dataset.
Error code: ConfigNamesError
Exception: ReadTimeout
Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: abc17db3-999f-4ce1-9912-7f1b99ae36d3)')
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
).get_module()
^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 631, in get_module
patterns = get_data_patterns(base_path, download_config=self.download_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 473, in get_data_patterns
return _get_data_files_patterns(resolver)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 262, in _get_data_files_patterns
data_files = pattern_resolver(pattern)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 360, in resolve_pattern
for filepath, info in fs.glob(pattern, detail=True, **glob_kwargs).items()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 520, in glob
path = self.resolve_path(path, revision=kwargs.get("revision")).unresolve()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path
repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist
self._api.repo_info(
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2816, in repo_info
return method(
^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2673, in dataset_info
r = get_session().get(path, headers=headers, timeout=timeout, params=params)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 602, in get
return self.request("GET", url, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 589, in request
resp = self.send(prep, **send_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 703, in send
r = adapter.send(request, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 96, in send
return super().send(request, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/adapters.py", line 690, in send
raise ReadTimeout(e, request=request)
requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: abc17db3-999f-4ce1-9912-7f1b99ae36d3)')Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Food Portion Benchmark (FPB) Dataset
The Food Portion Benchmark (FPB) is a comprehensive dataset and benchmark suite for multi-task food scene understanding, combining food detection and portion size (weight) estimation. It was introduced to support research in dietary analysis, nutrition tracking, and food computing. The dataset is built with high-quality annotations and evaluated using an extended YOLOv12-based multi-task model .
π¦ Dataset Overview
- Total images: 14,083
- Food classes: 138
- Annotations: Bounding boxes + Ground-truth weights (in grams)
- Image angles: Top-down and four side views
- Cameras: Intel RealSense D455 + smartphones
- Split: Train (9,521) / Validation (2,365) / Test (2,197)
- Collection setting: Controlled lab environment using local Central Asian cuisine
Each food item was weighed and categorized into small, medium, or large portions. Images were captured from different angles to enable robust volume and weight estimation.

π Dataset Structure and Format
The FPB dataset follows the YOLO annotation format, with a custom 6th column for food weight (in grams).
π§Ύ Label Format (YOLO-style with weight)
class_id: ID of the food class (0β137)x_center, y_center, width, height: Bounding box coordinates (normalized to [0, 1])weight: Ground truth weight in grams (used for regression)
Each .txt file matches the name of its corresponding image file.
π₯ Dataset Access & Benchmarking
- π¦ Download Dataset: Hugging Face link
- π Evaluate Your Model: Submit predictions on the test set using the automated score-checker
Test labels are hidden to ensure fair evaluation.
π§ Model Overview
The baseline model is a YOLOv12 multitask variant, extended with a regression head for predicting food weight (see Figure below). It was designed to be agnostic to missing labels, making it compatible with datasets that do not have weight annotations.

Github Source Code: Multitask-Food-Portion-Estimation
Best Model (YOLOv12-M @ 640Γ640):
- Detection: mAP50 = 0.974, mAP50-95 = 0.948
- Weight Estimation: MAE = 90.95g
π§ͺ Performance Tables
Table 1: Performance of YOLOv12M at different resolutions
Table 2: YOLOv8 vs YOLOv12 on FPB
ποΈββοΈ Training
Train the multi-task YOLOv12 model using train.py
π Inference
Download the trained best models from the drive link and run inference on test images using test.py
- Provide path to your images folder or image file
- Replace
modelwith the path to the downloaded model - Set
show=Trueto save annotated images with bounding boxes and predicted weights
π In case of using our work in your research, please cite this paper
@article{Sanatbyek_2025,
title={A multitask deep learning model for food scene recognition and portion estimationβthe Food Portion Benchmark (FPB) dataset},
volume={13},
DOI={10.1109/access.2025.3603287},
journal={IEEE Access},
author={Sanatbyek, Aibota and Rakhimzhanova, Tomiris and Nurmanova, Bibinur and Omarova, Zhuldyz and Rakhmankulova, Aidana and Orazbayev, Rustem and Varol, Huseyin Atakan and Chan, Mei Yen},
year={2025},
pages={152033β152045}
}
References
[1] Tian, Y., Ye, Q., & Doermann, D. (2025). YOLOv12: Attention-centric real-time object detectors. arXiv. https://arxiv.org/abs/2502.12524 [2] https://github.com/ultralytics/ultralytics
- Downloads last month
- 498

