Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    ReadTimeout
Message:      (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: abc17db3-999f-4ce1-9912-7f1b99ae36d3)')
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                                   ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
                  ).get_module()
                    ^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 631, in get_module
                  patterns = get_data_patterns(base_path, download_config=self.download_config)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 473, in get_data_patterns
                  return _get_data_files_patterns(resolver)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 262, in _get_data_files_patterns
                  data_files = pattern_resolver(pattern)
                               ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 360, in resolve_pattern
                  for filepath, info in fs.glob(pattern, detail=True, **glob_kwargs).items()
                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 520, in glob
                  path = self.resolve_path(path, revision=kwargs.get("revision")).unresolve()
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path
                  repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision)
                                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist
                  self._api.repo_info(
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2816, in repo_info
                  return method(
                         ^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2673, in dataset_info
                  r = get_session().get(path, headers=headers, timeout=timeout, params=params)
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 602, in get
                  return self.request("GET", url, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 589, in request
                  resp = self.send(prep, **send_kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 703, in send
                  r = adapter.send(request, **kwargs)
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 96, in send
                  return super().send(request, *args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/requests/adapters.py", line 690, in send
                  raise ReadTimeout(e, request=request)
              requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: abc17db3-999f-4ce1-9912-7f1b99ae36d3)')

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Food Portion Benchmark (FPB) Dataset

The Food Portion Benchmark (FPB) is a comprehensive dataset and benchmark suite for multi-task food scene understanding, combining food detection and portion size (weight) estimation. It was introduced to support research in dietary analysis, nutrition tracking, and food computing. The dataset is built with high-quality annotations and evaluated using an extended YOLOv12-based multi-task model .


πŸ“¦ Dataset Overview

  • Total images: 14,083
  • Food classes: 138
  • Annotations: Bounding boxes + Ground-truth weights (in grams)
  • Image angles: Top-down and four side views
  • Cameras: Intel RealSense D455 + smartphones
  • Split: Train (9,521) / Validation (2,365) / Test (2,197)
  • Collection setting: Controlled lab environment using local Central Asian cuisine

Each food item was weighed and categorized into small, medium, or large portions. Images were captured from different angles to enable robust volume and weight estimation. Portion examples

πŸ“ Dataset Structure and Format

The FPB dataset follows the YOLO annotation format, with a custom 6th column for food weight (in grams).

🧾 Label Format (YOLO-style with weight)

  • class_id: ID of the food class (0–137)
  • x_center, y_center, width, height: Bounding box coordinates (normalized to [0, 1])
  • weight: Ground truth weight in grams (used for regression)

Each .txt file matches the name of its corresponding image file.


πŸ“₯ Dataset Access & Benchmarking

Test labels are hidden to ensure fair evaluation.


🧠 Model Overview

The baseline model is a YOLOv12 multitask variant, extended with a regression head for predicting food weight (see Figure below). It was designed to be agnostic to missing labels, making it compatible with datasets that do not have weight annotations. Alt text

Github Source Code: Multitask-Food-Portion-Estimation

Best Model (YOLOv12-M @ 640Γ—640):

  • Detection: mAP50 = 0.974, mAP50-95 = 0.948
  • Weight Estimation: MAE = 90.95g

πŸ§ͺ Performance Tables

Table 1: Performance of YOLOv12M at different resolutions

YOLOv12M at different resolutions

Table 2: YOLOv8 vs YOLOv12 on FPB

YOLOv8 vs YOLOv12 results

πŸ‹οΈβ€β™‚οΈ Training

Train the multi-task YOLOv12 model using train.py

πŸ” Inference

Download the trained best models from the drive link and run inference on test images using test.py

  • Provide path to your images folder or image file
  • Replace model with the path to the downloaded model
  • Set show=True to save annotated images with bounding boxes and predicted weights

πŸ“š In case of using our work in your research, please cite this paper

 @article{Sanatbyek_2025,
    title={A multitask deep learning model for food scene recognition and portion estimationβ€”the Food Portion Benchmark (FPB) dataset}, 
    volume={13}, 
    DOI={10.1109/access.2025.3603287}, 
    journal={IEEE Access}, 
    author={Sanatbyek, Aibota and Rakhimzhanova, Tomiris and Nurmanova, Bibinur and Omarova, Zhuldyz and Rakhmankulova, Aidana and Orazbayev, Rustem and Varol, Huseyin Atakan and Chan, Mei Yen}, 
    year={2025}, 
    pages={152033–152045}
}

References

[1] Tian, Y., Ye, Q., & Doermann, D. (2025). YOLOv12: Attention-centric real-time object detectors. arXiv. https://arxiv.org/abs/2502.12524 [2] https://github.com/ultralytics/ultralytics

Downloads last month
498