output_dinov2_large

This model is a fine-tuned version of facebook/dinov2-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0294
  • Precision: 0.9810
  • Recall: 0.9748
  • F1: 0.9779

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
No log 1.0 145 0.0585 0.9332 0.9538 0.9434
No log 2.0 290 0.0367 0.9527 0.9727 0.9626
No log 3.0 435 0.0338 0.9776 0.9622 0.9698
1.3658 4.0 580 0.0265 0.9718 0.9769 0.9743
1.3658 5.0 725 0.0250 0.9708 0.9790 0.9749
1.3658 6.0 870 0.0323 0.9809 0.9695 0.9752
0.0959 7.0 1015 0.0285 0.9749 0.9800 0.9775
0.0959 8.0 1160 0.0319 0.9820 0.9727 0.9773
0.0959 9.0 1305 0.0313 0.9810 0.9737 0.9773
0.0959 10.0 1450 0.0294 0.9810 0.9748 0.9779

Framework versions

  • Transformers 5.0.0
  • Pytorch 2.10.0+cu128
  • Datasets 4.5.0
  • Tokenizers 0.22.2
Downloads last month
12
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for buddhadeb33/output_dinov2_large

Finetuned
(28)
this model