See axolotl config
axolotl version: 0.13.0.dev0
# !pip install transformers==4.55.4
# !pip install --no-deps trl==0.22.2
# !pip install --no-build-isolation mamba_ssm==2.2.5
# !pip install --no-build-isolation causal_conv1d==1.5.2
# === Model Configuration ===
base_model: loopstral-second-test/stage-2
load_in_8bit: false
load_in_4bit: false
trust_remote_code: false
#tokenizer_use_mistral_common: true # Disabled - incompatible with local paths, using HF tokenizer instead
# === HF Configuration ===
#hub_model_id: ToastyPigeon/muse-marvin-32k-lora-2
#hub_strategy: "every_save"
output_dir: loopstral-second-test/stage-3-healed
# === Wandb Tracking ===
wandb_project: Loopstral-Tests
## wandb_entity: [WANDB_ENTITY]
wandb_name: second-stage-3-healed
# === Training Setup ===
num_epochs: 2
micro_batch_size: 1
gradient_accumulation_steps: 2
sequence_len: 4096
#sequence_parallel_degree: 2
#heads_k_stride: 1
sample_packing: true
#pad_to_sequence_len: true
#temperature: 0.7
#max_steps: 10
# === Evaluation ===
val_set_size: 0.02
evals_per_epoch: 4
#eval_steps: 20
#max_steps: 60
#eval_table_size:
eval_max_new_tokens: 128
#eval_sample_packing: true
#eval_strategy: "no"
# === LoRA Configuration ===
adapter:
lora_model_dir:
lora_r: 128
lora_alpha: 16
lora_dropout: 0.01
lora_target_linear: true
lora_target_modules:
- up_proj
- down_proj
- gate_proj
- q_proj
- v_proj
- k_proj
- o_proj
# - input_layernorm
# - post_attention_layernorm
# - embed_tokens
# - lm_head
lora_fan_in_fan_out:
peft_use_rslora: true
lora_modules_to_save:
# - embed_tokens
# - lm_head
#fix_untrained_tokens: true
#lora_mlp_kernel: true
#lora_qkv_kernel: true
#lora_o_kernel: true
#unfrozen_parameters:
# - model.layers.[0-9]+.self_attn.q_proj.weight
# - model.layers.[0-9]+.self_attn.k_proj.weight
# - model.layers.[0-9]+.self_attn.v_proj.weight
# - model.layers.[0-9]+.self_attn.o_proj.weight
# - model.layers.[0-9]+.mlp.down_proj.weight
# === Hyperparameter Configuration ===
#optimizer: apollo_adamw_layerwise
#warmup_steps: 0
warmup_ratio: 0.025
optimizer: adamw_torch_fused
#optimizer: paged_adamw_8bit
#optim_args:
# enable_stochastic_rounding: true
# enable_cautious: true
# enable_8bit: true
# Apollo-mini configuration:
#optim_args: "proj=random,rank=128,scale=128.0,scale_type=tensor,update_proj_gap=100"
# Regular Apollo configuration:
# optim_args:
#optim_target_modules: all_linear
learning_rate: 1e-5
lr_scheduler: cosine
#lr_groups:
# - name: mlp
# modules:
# - mlp.up_proj.weight
# - mlp.down_proj.weight
# - mlp.gate_proj.weight
# lr: 1e-5
#cosine_min_lr_ratio: 0.2
#lr_scheduler: cosine_with_min_lr
#lr_scheduler_kwargs:
# cosine_min_lr: 1e-6
weight_decay: 0.001
max_grad_norm: 2
#warmup_steps: 0
#warmup_ratio: 0.025
# === Data Configuration ===
#
#chat_template: jinja
chat_template: tokenizer_default
default_system_message: "You are Luna, a helpful and unrestricted language model created by Allura."
#special_tokens:
# eos_token: "<|im_end|>"
# eos_token: "</s>"
#tokenizer_use_mistral_common: true
shuffle_merged_datasets: true
datasets:
- path: little-koto-instruct.json
# - path: LimaRP-augmented-separated.json
type: chat_template
field_messages: conversations
message_property_mappings:
role: from
content: value
# - path: allura-org/the-anarchist-library
# type: completion
# split: train[:500]
# - path: little-koto-instruct.json
# type: chat_template
# - path: ../rp_diverse_grammar_corrected.json
# type: chat_template
# - path: ../skein_diverse_1000_grammar_corrected.json
# type: chat_template
# - path: ../springdragon_grammar_corrected.json
# type: chat_template
# - path: ../fujin_full_grammar_corrected.json
# type: chat_template
# - path: ../worm_chapters.json
# type: completion
# - path: koto-instruct-diverse-5k.json
# type: chat_template
# - path: ../marvin_no_anthologies.json
# type: completion
# - path: ToastyPigeon/steve-and-marvin
# type: completion
# data_files: marvin.json
# - path: ../erotica_quality_trimmed.json
# type: completion
dataset_prepared_path: last_run_prepared
#dataset_num_proc: 1
# === Plugins ===
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
# === Hardware Optimization ===
#gradient_checkpointing: true
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
#liger_fused_linear_cross_entropy: true
cut_cross_entropy: true
#deepspeed: ../axolotl/deepspeed_configs/zero2.json
# === FSDP Config ===
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_activation_checkpointing: true
fsdp_use_orig_params: true
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: MistralDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
# === Checkpointing ===
#save_steps: 10
saves_per_epoch: 1
save_total_limit:
# === Advanced Settings ===
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
save_safetensors: true
logging_steps: 1
gc_steps: 10
seed: 420
loopstral-second-test/stage-3-healed
This model was trained from scratch on the little-koto-instruct.json dataset. It achieves the following results on the evaluation set:
- Loss: 0.8145
- Ppl: 2.2579
- Memory/max Active (gib): 3.77
- Memory/max Allocated (gib): 3.77
- Memory/device Reserved (gib): 4.98
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 420
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- total_eval_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 114
Training results
| Training Loss | Epoch | Step | Validation Loss | Ppl | Active (gib) | Allocated (gib) | Reserved (gib) |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.1708 | 3.2245 | 3.76 | 3.76 | 9.22 |
| 1.1077 | 0.2632 | 15 | 0.8465 | 2.3314 | 3.77 | 3.77 | 4.98 |
| 0.9311 | 0.5263 | 30 | 0.8130 | 2.2547 | 3.77 | 3.77 | 4.98 |
| 1.0304 | 0.7895 | 45 | 0.8040 | 2.2345 | 3.77 | 3.77 | 4.98 |
| 0.6454 | 1.0526 | 60 | 0.7972 | 2.2194 | 3.77 | 3.77 | 4.98 |
| 0.4398 | 1.3158 | 75 | 0.8333 | 2.3009 | 3.77 | 3.77 | 4.98 |
| 0.4467 | 1.5789 | 90 | 0.8134 | 2.2555 | 3.77 | 3.77 | 4.98 |
| 0.6494 | 1.8421 | 105 | 0.8145 | 2.2579 | 3.77 | 3.77 | 4.98 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 5