SentenceTransformer based on intfloat/multilingual-e5-base
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
"Instruct: Given a dialogue context, retrieve relevant followup phrase that align with the context\nDialogue Context: bot_0: Hi, I love country music. Do you have a favorite type of music?\nbot_1: I like classic country music, like patsy cline and hank snow.\nbot_0: That's awesome. I live in the country so it fits me, where do you live?\nbot_1: Up in alpine county ca. It's lovely up here in early spring.\nbot_0: I like spring, but winter is my favorite time of year.\nbot_1: I am so done with winter. Tough getting the kids to school. No snow days.\nbot_0: I understand, we live on a corn and bean farm and it can be hard.\nbot_1: I love farm-fresh organic food. It's all I make.\nbot_0: That's nice. I love living on the farm and driving the tractors.\nbot_1: I could do that! I would love farm life, but we live in the mountains.\nbot_0: That would be amazing! Have you lived there your entire life?\nbot_1: Yes, born and raised here in the sierras. We ski and snowmobile.\nbot_0: Amazing, were your parents from there also? My father is a preacher.",
'Followup phrase: My great-grandpa came to the Sierras in 1903. My great-grandpa came to mine gold.',
'Followup phrase: I read stealth and espionage themed books.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.8978 |
| cosine_accuracy_threshold |
0.772 |
| cosine_f1 |
0.6527 |
| cosine_f1_threshold |
0.7546 |
| cosine_precision |
0.6602 |
| cosine_recall |
0.6453 |
| cosine_ap |
0.7302 |
| cosine_mcc |
0.5842 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 100
per_device_eval_batch_size: 100
weight_decay: 0.01
num_train_epochs: 5
bf16: True
load_best_model_at_end: True
prompts: {'sentence1': 'Instruct: Given a dialogue context, retrieve relevant followup phrase that align with the context\nDialogue Context: ', 'sentence2': 'Followup phrase: '}
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 100
per_device_eval_batch_size: 100
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.01
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 5
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.0
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: {'sentence1': 'Instruct: Given a dialogue context, retrieve relevant followup phrase that align with the context\nDialogue Context: ', 'sentence2': 'Followup phrase: '}
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
cosine_ap |
| 0.1013 |
100 |
2.4265 |
- |
- |
| 0.2026 |
200 |
2.1867 |
- |
- |
| 0.3040 |
300 |
2.1658 |
- |
- |
| 0.4053 |
400 |
2.0992 |
- |
- |
| 0.5066 |
500 |
2.0569 |
- |
- |
| 0.6079 |
600 |
2.0444 |
- |
- |
| 0.7092 |
700 |
2.0274 |
- |
- |
| 0.8105 |
800 |
2.0095 |
- |
- |
| 0.9119 |
900 |
2.0072 |
- |
- |
| 1.0 |
987 |
- |
6.0145 |
0.7222 |
| 1.0132 |
1000 |
1.9768 |
- |
- |
| 1.1145 |
1100 |
1.932 |
- |
- |
| 1.2158 |
1200 |
1.9352 |
- |
- |
| 1.3171 |
1300 |
1.8966 |
- |
- |
| 1.4184 |
1400 |
1.9461 |
- |
- |
| 1.5198 |
1500 |
1.8999 |
- |
- |
| 1.6211 |
1600 |
1.9098 |
- |
- |
| 1.7224 |
1700 |
1.9049 |
- |
- |
| 1.8237 |
1800 |
1.9113 |
- |
- |
| 1.9250 |
1900 |
1.9211 |
- |
- |
| 2.0 |
1974 |
- |
6.2014 |
0.7302 |
Framework Versions
- Python: 3.10.18
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.7.1+cu128
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}