Netsnake/Refact-1_6B-fim-Q5_K_M-GGUF
This model was converted to GGUF format from refactai/Refact-1_6B-fim using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Netsnake/Refact-1_6B-fim-Q5_K_M-GGUF --hf-file refact-1_6b-fim-q5_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Netsnake/Refact-1_6B-fim-Q5_K_M-GGUF --hf-file refact-1_6b-fim-q5_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Netsnake/Refact-1_6B-fim-Q5_K_M-GGUF --hf-file refact-1_6b-fim-q5_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Netsnake/Refact-1_6B-fim-Q5_K_M-GGUF --hf-file refact-1_6b-fim-q5_k_m.gguf -c 2048
- Downloads last month
- 13
Hardware compatibility
Log In
to view the estimation
5-bit
Model tree for Netsnake/Refact-1_6B-fim-Q5_K_M-GGUF
Base model
refactai/Refact-1_6B-fimDatasets used to train Netsnake/Refact-1_6B-fim-Q5_K_M-GGUF
Evaluation results
- pass@1 (T=0.01) on HumanEvalself-reported32.000
- pass@1 (T=0.2) on HumanEvalself-reported31.500
- pass@10 (T=0.8) on HumanEvalself-reported53.000
- pass@100 (T=0.8) on HumanEvalself-reported76.900
- pass@1 (T=0.2) on HumanEvalSynthesize Pythonself-reported35.800
- pass@1 (T=0.2) on HumanEvalSynthesize Pythonself-reported31.600
- pass@1 (T=0.2) on HumanEvalSynthesize Pythonself-reported29.100
- pass@1 (T=0.2) on HumanEvalSynthesize Pythonself-reported-1.000
- pass@1 (T=0.2) on HumanEvalSynthesize Pythonself-reported26.300
- pass@1 (T=0.2) on HumanEvalSynthesize Pythonself-reported-1.000