variant-tapt_grouped_llrd_grouped_txt-LR_2e-05

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on the Mardiyyah/TAPT-PDBE-V1 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0877
  • Accuracy: 0.7598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2 1.0 9 1.2315 0.7372
1.1988 2.0 18 1.1789 0.7469
1.1858 3.0 27 1.2256 0.7414
1.15 4.0 36 1.1462 0.7498
1.1719 5.0 45 1.1476 0.7490
1.1317 6.0 54 1.1450 0.7536
1.1332 7.0 63 1.1061 0.7563
1.1144 8.0 72 1.1648 0.7470
1.1076 9.0 81 1.1224 0.7502
1.1046 10.0 90 1.1075 0.7616
1.093 11.0 99 1.0575 0.7647
1.0771 12.0 108 1.1003 0.7601
1.0731 13.0 117 1.1110 0.7552
1.0761 14.0 126 1.1021 0.7583
1.0856 15.0 135 1.0896 0.7572
1.0586 16.0 144 1.0765 0.7636
1.0448 17.0 153 1.0927 0.7578
1.0586 18.0 162 1.0717 0.7628
1.0551 19.0 171 1.1044 0.7570
1.0391 20.0 180 1.0854 0.7602
1.0377 21.0 189 1.0820 0.7625
1.0389 22.0 198 1.0733 0.7612
1.0328 23.0 207 1.0721 0.7609
1.0146 24.0 216 1.0660 0.7680
1.0192 25.0 225 1.0863 0.7620
1.0272 26.0 234 1.0792 0.7582
1.0286 27.0 243 1.0847 0.7597
1.035 28.0 252 1.0971 0.7550
1.0208 29.0 261 1.0522 0.7701
1.0153 30.0 270 1.0948 0.7577
1.0149 31.0 279 1.0692 0.7633
1.012 32.0 288 1.0748 0.7633
1.0186 33.0 297 1.0568 0.7683
0.9948 34.0 306 1.0866 0.7630
1.0128 35.0 315 1.0747 0.7618
1.0022 36.0 324 1.1023 0.7563
1.0071 37.0 333 1.0571 0.7684
1.0116 38.0 342 1.0667 0.7603
1.0066 39.0 351 1.0694 0.7583
0.9944 40.0 360 1.0528 0.7638
1.0086 41.0 369 1.0723 0.7634
0.9846 42.0 378 1.0724 0.7659
0.9723 43.0 387 1.0760 0.7626
1.0 44.0 396 1.1026 0.7603
0.9822 45.0 405 1.0688 0.7651
0.9952 46.0 414 1.0800 0.7616
0.9873 47.0 423 1.0989 0.7606
0.98 48.0 432 1.0886 0.7594
0.9876 49.0 441 1.0835 0.7587
0.9832 50.0 450 1.0555 0.7656
0.973 51.0 459 1.1021 0.7583
0.9726 52.0 468 1.0678 0.7652
0.9592 53.0 477 1.0955 0.7573
0.975 54.0 486 1.0890 0.7629
0.9886 55.0 495 1.1057 0.7607
0.9692 56.0 504 1.0802 0.7556
0.9715 57.0 513 1.1034 0.7590
0.9622 58.0 522 1.0644 0.7637
0.9886 59.0 531 1.0552 0.7629
0.9837 60.0 540 1.0870 0.7614
0.9721 61.0 549 1.0611 0.7643
0.9615 62.0 558 1.0561 0.7671
0.9564 63.0 567 1.0735 0.7600
0.9581 64.0 576 1.0920 0.7594
0.9426 65.0 585 1.0937 0.7618
0.9754 66.0 594 1.1217 0.7581
0.9415 67.0 603 1.0475 0.7629
0.9427 68.0 612 1.0621 0.7652
0.9481 69.0 621 1.0302 0.7711
0.961 70.0 630 1.1056 0.7551
0.9573 71.0 639 1.0640 0.7626
0.9458 72.0 648 1.1082 0.7548
0.9418 73.0 657 1.0844 0.7581
0.9326 74.0 666 1.0544 0.7656
0.9395 75.0 675 1.0929 0.7617
0.9407 76.0 684 1.0888 0.7651
0.9541 77.0 693 1.0825 0.7600
0.9391 78.0 702 1.0542 0.7630
0.9215 79.0 711 1.0896 0.7591
0.9613 80.0 720 1.0846 0.7593
0.9514 81.0 729 1.1061 0.7564
0.9346 82.0 738 1.0376 0.7656
0.9444 83.0 747 1.0703 0.7669
0.9337 84.0 756 1.0705 0.7597
0.9456 85.0 765 1.0861 0.7583
0.9363 86.0 774 1.0777 0.7613
0.926 87.0 783 1.0810 0.7583
0.9303 88.0 792 1.0740 0.7597
0.9668 88.9143 800 1.0833 0.7599

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Mardiyyah/variant-tapt_grouped_llrd_grouped_txt-LR_2e-05

Evaluation results