CeLLaTe-tapt_ulmfit_dropout-LR_2e-05
This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1297
- Accuracy: 0.7472
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3407
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.426 | 1.0 | 21 | 1.2594 | 0.7324 |
| 1.405 | 2.0 | 42 | 1.2467 | 0.7365 |
| 1.3782 | 3.0 | 63 | 1.2079 | 0.7407 |
| 1.3614 | 4.0 | 84 | 1.2269 | 0.7358 |
| 1.3302 | 5.0 | 105 | 1.2186 | 0.7397 |
| 1.3407 | 6.0 | 126 | 1.2298 | 0.7372 |
| 1.3142 | 7.0 | 147 | 1.1692 | 0.7422 |
| 1.3043 | 8.0 | 168 | 1.1879 | 0.7477 |
| 1.2867 | 9.0 | 189 | 1.1543 | 0.7456 |
| 1.273 | 10.0 | 210 | 1.1645 | 0.7487 |
| 1.2353 | 11.0 | 231 | 1.1340 | 0.7530 |
| 1.2552 | 12.0 | 252 | 1.1548 | 0.7458 |
| 1.2649 | 13.0 | 273 | 1.1796 | 0.7421 |
| 1.2546 | 14.0 | 294 | 1.1249 | 0.7503 |
| 1.2589 | 15.0 | 315 | 1.1655 | 0.7422 |
| 1.2143 | 16.0 | 336 | 1.1486 | 0.7463 |
| 1.2234 | 17.0 | 357 | 1.1934 | 0.7386 |
| 1.2034 | 18.0 | 378 | 1.1431 | 0.7515 |
| 1.2183 | 19.0 | 399 | 1.1518 | 0.7462 |
| 1.2094 | 20.0 | 420 | 1.1478 | 0.7482 |
| 1.1699 | 21.0 | 441 | 1.1046 | 0.7528 |
| 1.175 | 22.0 | 462 | 1.1525 | 0.7458 |
| 1.1684 | 23.0 | 483 | 1.1512 | 0.7462 |
| 1.1566 | 24.0 | 504 | 1.1233 | 0.7524 |
| 1.1808 | 25.0 | 525 | 1.1751 | 0.7438 |
| 1.1737 | 26.0 | 546 | 1.1341 | 0.7468 |
| 1.1754 | 27.0 | 567 | 1.1424 | 0.7529 |
| 1.1624 | 28.0 | 588 | 1.1671 | 0.7442 |
| 1.1412 | 29.0 | 609 | 1.1675 | 0.7406 |
| 1.1699 | 30.0 | 630 | 1.1478 | 0.7499 |
| 1.1309 | 31.0 | 651 | 1.1678 | 0.7488 |
| 1.1596 | 32.0 | 672 | 1.1422 | 0.7477 |
| 1.131 | 33.0 | 693 | 1.1264 | 0.7516 |
| 1.1422 | 34.0 | 714 | 1.1328 | 0.7488 |
| 1.1428 | 35.0 | 735 | 1.1617 | 0.7428 |
| 1.1379 | 36.0 | 756 | 1.1618 | 0.7471 |
| 1.1491 | 37.0 | 777 | 1.1310 | 0.7514 |
| 1.1334 | 38.0 | 798 | 1.1507 | 0.7465 |
| 1.1153 | 39.0 | 819 | 1.1212 | 0.7506 |
| 1.1392 | 40.0 | 840 | 1.0955 | 0.7595 |
| 1.1094 | 41.0 | 861 | 1.1670 | 0.7438 |
| 1.1322 | 42.0 | 882 | 1.1925 | 0.7410 |
| 1.1319 | 43.0 | 903 | 1.1508 | 0.7459 |
| 1.1202 | 44.0 | 924 | 1.1277 | 0.7511 |
| 1.1223 | 45.0 | 945 | 1.1551 | 0.7502 |
| 1.1199 | 46.0 | 966 | 1.1411 | 0.7466 |
| 1.1105 | 47.0 | 987 | 1.1702 | 0.7452 |
| 1.1013 | 48.0 | 1008 | 1.1395 | 0.7486 |
| 1.1339 | 49.0 | 1029 | 1.1975 | 0.7396 |
| 1.1186 | 50.0 | 1050 | 1.1667 | 0.7469 |
| 1.1078 | 51.0 | 1071 | 1.1962 | 0.7400 |
| 1.0944 | 52.0 | 1092 | 1.1565 | 0.7497 |
| 1.1137 | 53.0 | 1113 | 1.1655 | 0.7460 |
| 1.0994 | 54.0 | 1134 | 1.1924 | 0.7465 |
| 1.0878 | 55.0 | 1155 | 1.1722 | 0.7461 |
| 1.0987 | 56.0 | 1176 | 1.1313 | 0.7520 |
| 1.1115 | 57.0 | 1197 | 1.1533 | 0.7495 |
| 1.1148 | 58.0 | 1218 | 1.1544 | 0.75 |
| 1.0921 | 59.0 | 1239 | 1.1420 | 0.7530 |
| 1.0926 | 60.0 | 1260 | 1.1345 | 0.7531 |
| 1.0914 | 61.0 | 1281 | 1.1660 | 0.7493 |
| 1.1003 | 62.0 | 1302 | 1.1202 | 0.7496 |
| 1.1161 | 63.0 | 1323 | 1.1612 | 0.7472 |
| 1.0775 | 64.0 | 1344 | 1.1715 | 0.7435 |
| 1.0852 | 65.0 | 1365 | 1.1480 | 0.7469 |
| 1.102 | 66.0 | 1386 | 1.2095 | 0.7425 |
| 1.0872 | 67.0 | 1407 | 1.1536 | 0.7489 |
| 1.0647 | 68.0 | 1428 | 1.1590 | 0.7429 |
| 1.0972 | 69.0 | 1449 | 1.1403 | 0.7516 |
| 1.0845 | 70.0 | 1470 | 1.1698 | 0.7478 |
| 1.0737 | 71.0 | 1491 | 1.1356 | 0.7506 |
| 1.0774 | 72.0 | 1512 | 1.1739 | 0.7408 |
| 1.0813 | 73.0 | 1533 | 1.1556 | 0.7480 |
| 1.0678 | 74.0 | 1554 | 1.1336 | 0.7547 |
| 1.0767 | 75.0 | 1575 | 1.1454 | 0.7478 |
| 1.0852 | 76.0 | 1596 | 1.1427 | 0.7432 |
| 1.0896 | 77.0 | 1617 | 1.1400 | 0.7518 |
| 1.0798 | 78.0 | 1638 | 1.1641 | 0.7436 |
| 1.0745 | 79.0 | 1659 | 1.1264 | 0.7520 |
| 1.1071 | 80.0 | 1680 | 1.1352 | 0.7486 |
| 1.0665 | 81.0 | 1701 | 1.1544 | 0.7531 |
| 1.0565 | 82.0 | 1722 | 1.1254 | 0.7551 |
| 1.0965 | 83.0 | 1743 | 1.1742 | 0.7491 |
| 1.0715 | 84.0 | 1764 | 1.1154 | 0.7544 |
| 1.0651 | 85.0 | 1785 | 1.1519 | 0.7457 |
| 1.0827 | 86.0 | 1806 | 1.1722 | 0.7452 |
| 1.0904 | 87.0 | 1827 | 1.1895 | 0.7428 |
| 1.0697 | 88.0 | 1848 | 1.1616 | 0.7461 |
| 1.0693 | 89.0 | 1869 | 1.1217 | 0.7554 |
| 1.0733 | 90.0 | 1890 | 1.1338 | 0.7462 |
| 1.0806 | 91.0 | 1911 | 1.1403 | 0.7512 |
| 1.0803 | 92.0 | 1932 | 1.1469 | 0.7502 |
| 1.0726 | 93.0 | 1953 | 1.1279 | 0.7533 |
| 1.082 | 94.0 | 1974 | 1.1460 | 0.7472 |
| 1.0766 | 95.0 | 1995 | 1.1729 | 0.7411 |
| 1.0706 | 96.0 | 2016 | 1.1616 | 0.7459 |
| 1.1028 | 97.0 | 2037 | 1.1496 | 0.7507 |
| 1.0615 | 98.0 | 2058 | 1.1214 | 0.7521 |
| 1.0624 | 99.0 | 2079 | 1.1538 | 0.7449 |
| 1.0889 | 100.0 | 2100 | 1.1297 | 0.7472 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.21.0
- Downloads last month
- 4