CeLLaTe-tapt_ulmfit_dropout-LR_2e-05

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1297
  • Accuracy: 0.7472

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3407
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.426 1.0 21 1.2594 0.7324
1.405 2.0 42 1.2467 0.7365
1.3782 3.0 63 1.2079 0.7407
1.3614 4.0 84 1.2269 0.7358
1.3302 5.0 105 1.2186 0.7397
1.3407 6.0 126 1.2298 0.7372
1.3142 7.0 147 1.1692 0.7422
1.3043 8.0 168 1.1879 0.7477
1.2867 9.0 189 1.1543 0.7456
1.273 10.0 210 1.1645 0.7487
1.2353 11.0 231 1.1340 0.7530
1.2552 12.0 252 1.1548 0.7458
1.2649 13.0 273 1.1796 0.7421
1.2546 14.0 294 1.1249 0.7503
1.2589 15.0 315 1.1655 0.7422
1.2143 16.0 336 1.1486 0.7463
1.2234 17.0 357 1.1934 0.7386
1.2034 18.0 378 1.1431 0.7515
1.2183 19.0 399 1.1518 0.7462
1.2094 20.0 420 1.1478 0.7482
1.1699 21.0 441 1.1046 0.7528
1.175 22.0 462 1.1525 0.7458
1.1684 23.0 483 1.1512 0.7462
1.1566 24.0 504 1.1233 0.7524
1.1808 25.0 525 1.1751 0.7438
1.1737 26.0 546 1.1341 0.7468
1.1754 27.0 567 1.1424 0.7529
1.1624 28.0 588 1.1671 0.7442
1.1412 29.0 609 1.1675 0.7406
1.1699 30.0 630 1.1478 0.7499
1.1309 31.0 651 1.1678 0.7488
1.1596 32.0 672 1.1422 0.7477
1.131 33.0 693 1.1264 0.7516
1.1422 34.0 714 1.1328 0.7488
1.1428 35.0 735 1.1617 0.7428
1.1379 36.0 756 1.1618 0.7471
1.1491 37.0 777 1.1310 0.7514
1.1334 38.0 798 1.1507 0.7465
1.1153 39.0 819 1.1212 0.7506
1.1392 40.0 840 1.0955 0.7595
1.1094 41.0 861 1.1670 0.7438
1.1322 42.0 882 1.1925 0.7410
1.1319 43.0 903 1.1508 0.7459
1.1202 44.0 924 1.1277 0.7511
1.1223 45.0 945 1.1551 0.7502
1.1199 46.0 966 1.1411 0.7466
1.1105 47.0 987 1.1702 0.7452
1.1013 48.0 1008 1.1395 0.7486
1.1339 49.0 1029 1.1975 0.7396
1.1186 50.0 1050 1.1667 0.7469
1.1078 51.0 1071 1.1962 0.7400
1.0944 52.0 1092 1.1565 0.7497
1.1137 53.0 1113 1.1655 0.7460
1.0994 54.0 1134 1.1924 0.7465
1.0878 55.0 1155 1.1722 0.7461
1.0987 56.0 1176 1.1313 0.7520
1.1115 57.0 1197 1.1533 0.7495
1.1148 58.0 1218 1.1544 0.75
1.0921 59.0 1239 1.1420 0.7530
1.0926 60.0 1260 1.1345 0.7531
1.0914 61.0 1281 1.1660 0.7493
1.1003 62.0 1302 1.1202 0.7496
1.1161 63.0 1323 1.1612 0.7472
1.0775 64.0 1344 1.1715 0.7435
1.0852 65.0 1365 1.1480 0.7469
1.102 66.0 1386 1.2095 0.7425
1.0872 67.0 1407 1.1536 0.7489
1.0647 68.0 1428 1.1590 0.7429
1.0972 69.0 1449 1.1403 0.7516
1.0845 70.0 1470 1.1698 0.7478
1.0737 71.0 1491 1.1356 0.7506
1.0774 72.0 1512 1.1739 0.7408
1.0813 73.0 1533 1.1556 0.7480
1.0678 74.0 1554 1.1336 0.7547
1.0767 75.0 1575 1.1454 0.7478
1.0852 76.0 1596 1.1427 0.7432
1.0896 77.0 1617 1.1400 0.7518
1.0798 78.0 1638 1.1641 0.7436
1.0745 79.0 1659 1.1264 0.7520
1.1071 80.0 1680 1.1352 0.7486
1.0665 81.0 1701 1.1544 0.7531
1.0565 82.0 1722 1.1254 0.7551
1.0965 83.0 1743 1.1742 0.7491
1.0715 84.0 1764 1.1154 0.7544
1.0651 85.0 1785 1.1519 0.7457
1.0827 86.0 1806 1.1722 0.7452
1.0904 87.0 1827 1.1895 0.7428
1.0697 88.0 1848 1.1616 0.7461
1.0693 89.0 1869 1.1217 0.7554
1.0733 90.0 1890 1.1338 0.7462
1.0806 91.0 1911 1.1403 0.7512
1.0803 92.0 1932 1.1469 0.7502
1.0726 93.0 1953 1.1279 0.7533
1.082 94.0 1974 1.1460 0.7472
1.0766 95.0 1995 1.1729 0.7411
1.0706 96.0 2016 1.1616 0.7459
1.1028 97.0 2037 1.1496 0.7507
1.0615 98.0 2058 1.1214 0.7521
1.0624 99.0 2079 1.1538 0.7449
1.0889 100.0 2100 1.1297 0.7472

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Mardiyyah/CeLLaTe-tapt_ulmfit_dropout-LR_2e-05

Evaluation results