HIPIE: Hierarchical Open-vocabulary Universal Image Segmentation
PyTorch implementation of HIPIE from "Hierarchical Open-vocabulary Universal Image Segmentation" (Wang et al., NeurIPS 2023).
Pretrained Weights
We provide ViT-H and ResNet-50 weights for hierarchical and part-aware image segmentation across multiple datasets:
| Format | Filename | Description |
|---|---|---|
| ViT-H (O365, COCO, RefCOCO, PACO) | vit_h_cloud.pth |
Pretrained with O365,COCO,RefCOCO,PACO |
| ViT-H (COCO, RefCOCO, Pascal-Parts) | vit_h_cloud_parts.pth |
Finetuned on COCO,RefCOCO,Pascal-Parts |
| ResNet-50 (Pascal-Parts) | r50_parts.pth |
Pretrained with O365,COCO,RefCOCO,Pascal Panoptic Parts |
Usage
For demo notebooks, model configs, and inference scripts, see the GitHub repository.
Citation
@inproceedings{wang2023hierarchical,
title={Hierarchical Open-vocabulary Universal Image Segmentation},
author={Wang, Xudong and Li, Shufan and Kallidromitis, Konstantinos and Kato, Yusuke and Kozuka, Kazuki and Darrell, Trevor},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023}
}
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support