results

This model is a fine-tuned version of UBC-NLP/MARBERTv2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3179
  • F1-micro: 0.7925
  • F1-macro: 0.7727
  • Jaccard: 0.7206

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1-micro F1-macro Jaccard
No log 1.0 39 0.4793 0.5859 0.4521 0.4773
No log 2.0 78 0.4556 0.5737 0.4510 0.4754
0.4791 3.0 117 0.4079 0.6209 0.4892 0.5413
0.4791 4.0 156 0.3969 0.5785 0.4580 0.5008
0.4791 5.0 195 0.3711 0.6526 0.5956 0.5738
0.3661 6.0 234 0.3866 0.6246 0.5735 0.5357
0.3661 7.0 273 0.3400 0.7123 0.6774 0.6405
0.2748 8.0 312 0.3415 0.7163 0.6823 0.6365
0.2748 9.0 351 0.3296 0.75 0.7204 0.6714
0.2748 10.0 390 0.3162 0.7735 0.7438 0.6984
0.2162 11.0 429 0.3174 0.7859 0.7613 0.7111
0.2162 12.0 468 0.3056 0.7847 0.7656 0.7222
0.1889 13.0 507 0.3217 0.7880 0.7681 0.7159
0.1889 14.0 546 0.3209 0.7847 0.7649 0.7111
0.1889 15.0 585 0.3179 0.7925 0.7727 0.7206

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1
Downloads last month
6
Safetensors
Model size
0.2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Hashuz/QT_MentalQA

Base model

UBC-NLP/MARBERTv2
Finetuned
(27)
this model

Space using Hashuz/QT_MentalQA 1

Evaluation results