results
This model is a fine-tuned version of UBC-NLP/MARBERTv2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3179
- F1-micro: 0.7925
- F1-macro: 0.7727
- Jaccard: 0.7206
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
Training results
| Training Loss | Epoch | Step | Validation Loss | F1-micro | F1-macro | Jaccard |
|---|---|---|---|---|---|---|
| No log | 1.0 | 39 | 0.4793 | 0.5859 | 0.4521 | 0.4773 |
| No log | 2.0 | 78 | 0.4556 | 0.5737 | 0.4510 | 0.4754 |
| 0.4791 | 3.0 | 117 | 0.4079 | 0.6209 | 0.4892 | 0.5413 |
| 0.4791 | 4.0 | 156 | 0.3969 | 0.5785 | 0.4580 | 0.5008 |
| 0.4791 | 5.0 | 195 | 0.3711 | 0.6526 | 0.5956 | 0.5738 |
| 0.3661 | 6.0 | 234 | 0.3866 | 0.6246 | 0.5735 | 0.5357 |
| 0.3661 | 7.0 | 273 | 0.3400 | 0.7123 | 0.6774 | 0.6405 |
| 0.2748 | 8.0 | 312 | 0.3415 | 0.7163 | 0.6823 | 0.6365 |
| 0.2748 | 9.0 | 351 | 0.3296 | 0.75 | 0.7204 | 0.6714 |
| 0.2748 | 10.0 | 390 | 0.3162 | 0.7735 | 0.7438 | 0.6984 |
| 0.2162 | 11.0 | 429 | 0.3174 | 0.7859 | 0.7613 | 0.7111 |
| 0.2162 | 12.0 | 468 | 0.3056 | 0.7847 | 0.7656 | 0.7222 |
| 0.1889 | 13.0 | 507 | 0.3217 | 0.7880 | 0.7681 | 0.7159 |
| 0.1889 | 14.0 | 546 | 0.3209 | 0.7847 | 0.7649 | 0.7111 |
| 0.1889 | 15.0 | 585 | 0.3179 | 0.7925 | 0.7727 | 0.7206 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 6
Model tree for Hashuz/QT_MentalQA
Base model
UBC-NLP/MARBERTv2