NLP β Sentiment & Text Classification
Collection
NLP β Sentiment & Text Classification by Harsha901
β’
2 items
β’
Updated
This is a fine-tuned TinyBERT model for binary sentiment classification on a 5,000-sample subset of the IMDB dataset. It predicts whether a movie review is positive or negative.
huawei-noah/TinyBERT_General_4L_312DAutoTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')Trainer| Metric | Value |
|---|---|
| Accuracy | 88.02% |
| Evaluation Loss | 0.2962 |
| Runtime | 30.9 sec |
| Samples per Second | 485 |
from transformers import pipeline
classifier = pipeline(
"text-classification",
model="Harsha901/tinybert-imdb-sentiment-analysis-model"
)
result = classifier("This movie was absolutely amazing!")
print(result) # [{'label': 'LABEL_1', 'score': 0.98}]
Base model
huawei-noah/TinyBERT_General_4L_312D