--- library_name: pytorch license: other tags: - backbone - android pipeline_tag: image-classification --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/regnet/web-assets/model_demo.png) # RegNet: Optimized for Qualcomm Devices RegNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases. This is based on the implementation of RegNet found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py). This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the [Qualcomm® AI Hub Models](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/regnet) library to export with custom configurations. More details on model performance across various devices, can be found [here](#performance-summary). Qualcomm AI Hub Models uses [Qualcomm AI Hub Workbench](https://workbench.aihub.qualcomm.com) to compile, profile, and evaluate this model. [Sign up](https://myaccount.qualcomm.com/signup) to run these models on a hosted Qualcomm® device. ## Getting Started There are two ways to deploy this model on your device: ### Option 1: Download Pre-Exported Models Below are pre-exported model assets ready for deployment. | Runtime | Precision | Chipset | SDK Versions | Download | |---|---|---|---|---| | ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/regnet/releases/v0.46.0/regnet-onnx-float.zip) | ONNX | w8a8 | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/regnet/releases/v0.46.0/regnet-onnx-w8a8.zip) | QNN_DLC | float | Universal | QAIRT 2.42 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/regnet/releases/v0.46.0/regnet-qnn_dlc-float.zip) | QNN_DLC | w8a8 | Universal | QAIRT 2.42 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/regnet/releases/v0.46.0/regnet-qnn_dlc-w8a8.zip) | TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/regnet/releases/v0.46.0/regnet-tflite-float.zip) | TFLITE | w8a8 | Universal | QAIRT 2.42, TFLite 2.17.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/regnet/releases/v0.46.0/regnet-tflite-w8a8.zip) For more device-specific assets and performance metrics, visit **[RegNet on Qualcomm® AI Hub](https://aihub.qualcomm.com/models/regnet)**. ### Option 2: Export with Custom Configurations Use the [Qualcomm® AI Hub Models](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/regnet) Python library to compile and export the model with your own: - Custom weights (e.g., fine-tuned checkpoints) - Custom input shapes - Target device and runtime configurations This option is ideal if you need to customize the model beyond the default configuration provided here. See our repository for [RegNet on GitHub](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/regnet) for usage instructions. ## Model Details **Model Type:** Model_use_case.image_classification **Model Stats:** - Model checkpoint: Imagenet - Input resolution: 224x224 - Number of parameters: 15.3M - Model size (float): 58.3 MB - Model size (w8a8): 15.4 MB ## Performance Summary | Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |---|---|---|---|---|---|--- | RegNet | ONNX | float | Snapdragon® X Elite | 1.933 ms | 39 - 39 MB | NPU | RegNet | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 1.509 ms | 0 - 186 MB | NPU | RegNet | ONNX | float | Qualcomm® QCS8550 (Proxy) | 2.038 ms | 0 - 44 MB | NPU | RegNet | ONNX | float | Qualcomm® QCS9075 | 3.075 ms | 0 - 4 MB | NPU | RegNet | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 1.239 ms | 0 - 140 MB | NPU | RegNet | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 1.021 ms | 0 - 140 MB | NPU | RegNet | ONNX | w8a8 | Snapdragon® X Elite | 1.137 ms | 20 - 20 MB | NPU | RegNet | ONNX | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.87 ms | 0 - 197 MB | NPU | RegNet | ONNX | w8a8 | Qualcomm® QCS6490 | 27.939 ms | 7 - 18 MB | CPU | RegNet | ONNX | w8a8 | Qualcomm® QCS8550 (Proxy) | 1.184 ms | 0 - 107 MB | NPU | RegNet | ONNX | w8a8 | Qualcomm® QCS9075 | 1.324 ms | 0 - 3 MB | NPU | RegNet | ONNX | w8a8 | Qualcomm® QCM6690 | 18.049 ms | 8 - 17 MB | CPU | RegNet | ONNX | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.722 ms | 0 - 152 MB | NPU | RegNet | ONNX | w8a8 | Snapdragon® 7 Gen 4 Mobile | 13.384 ms | 9 - 18 MB | CPU | RegNet | ONNX | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.674 ms | 0 - 153 MB | NPU | RegNet | QNN_DLC | float | Snapdragon® X Elite | 2.287 ms | 1 - 1 MB | NPU | RegNet | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 1.413 ms | 0 - 128 MB | NPU | RegNet | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 9.987 ms | 1 - 76 MB | NPU | RegNet | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 2.051 ms | 1 - 135 MB | NPU | RegNet | QNN_DLC | float | Qualcomm® SA8775P | 3.263 ms | 0 - 79 MB | NPU | RegNet | QNN_DLC | float | Qualcomm® QCS9075 | 3.058 ms | 1 - 3 MB | NPU | RegNet | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 3.482 ms | 0 - 115 MB | NPU | RegNet | QNN_DLC | float | Qualcomm® SA7255P | 9.987 ms | 1 - 76 MB | NPU | RegNet | QNN_DLC | float | Qualcomm® SA8295P | 3.5 ms | 1 - 66 MB | NPU | RegNet | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 1.106 ms | 0 - 80 MB | NPU | RegNet | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.889 ms | 1 - 81 MB | NPU | RegNet | QNN_DLC | w8a8 | Snapdragon® X Elite | 1.071 ms | 0 - 0 MB | NPU | RegNet | QNN_DLC | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.638 ms | 0 - 109 MB | NPU | RegNet | QNN_DLC | w8a8 | Qualcomm® QCS6490 | 2.712 ms | 0 - 2 MB | NPU | RegNet | QNN_DLC | w8a8 | Qualcomm® QCS8275 (Proxy) | 2.3 ms | 0 - 76 MB | NPU | RegNet | QNN_DLC | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.886 ms | 0 - 2 MB | NPU | RegNet | QNN_DLC | w8a8 | Qualcomm® SA8775P | 1.199 ms | 0 - 78 MB | NPU | RegNet | QNN_DLC | w8a8 | Qualcomm® QCS9075 | 1.068 ms | 0 - 2 MB | NPU | RegNet | QNN_DLC | w8a8 | Qualcomm® QCM6690 | 7.075 ms | 0 - 196 MB | NPU | RegNet | QNN_DLC | w8a8 | Qualcomm® QCS8450 (Proxy) | 1.295 ms | 0 - 110 MB | NPU | RegNet | QNN_DLC | w8a8 | Qualcomm® SA7255P | 2.3 ms | 0 - 76 MB | NPU | RegNet | QNN_DLC | w8a8 | Qualcomm® SA8295P | 1.606 ms | 0 - 76 MB | NPU | RegNet | QNN_DLC | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.493 ms | 0 - 76 MB | NPU | RegNet | QNN_DLC | w8a8 | Snapdragon® 7 Gen 4 Mobile | 1.153 ms | 0 - 76 MB | NPU | RegNet | QNN_DLC | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.428 ms | 0 - 80 MB | NPU | RegNet | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 1.417 ms | 0 - 160 MB | NPU | RegNet | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 9.908 ms | 0 - 104 MB | NPU | RegNet | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 2.031 ms | 0 - 3 MB | NPU | RegNet | TFLITE | float | Qualcomm® SA8775P | 13.985 ms | 0 - 104 MB | NPU | RegNet | TFLITE | float | Qualcomm® QCS9075 | 3.046 ms | 0 - 42 MB | NPU | RegNet | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 3.455 ms | 0 - 144 MB | NPU | RegNet | TFLITE | float | Qualcomm® SA7255P | 9.908 ms | 0 - 104 MB | NPU | RegNet | TFLITE | float | Qualcomm® SA8295P | 3.52 ms | 0 - 83 MB | NPU | RegNet | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 1.095 ms | 0 - 106 MB | NPU | RegNet | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.887 ms | 0 - 106 MB | NPU | RegNet | TFLITE | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.536 ms | 0 - 119 MB | NPU | RegNet | TFLITE | w8a8 | Qualcomm® QCS6490 | 2.321 ms | 0 - 22 MB | NPU | RegNet | TFLITE | w8a8 | Qualcomm® QCS8275 (Proxy) | 1.992 ms | 0 - 76 MB | NPU | RegNet | TFLITE | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.722 ms | 0 - 2 MB | NPU | RegNet | TFLITE | w8a8 | Qualcomm® SA8775P | 1.047 ms | 0 - 77 MB | NPU | RegNet | TFLITE | w8a8 | Qualcomm® QCS9075 | 0.888 ms | 0 - 22 MB | NPU | RegNet | TFLITE | w8a8 | Qualcomm® QCM6690 | 6.625 ms | 0 - 190 MB | NPU | RegNet | TFLITE | w8a8 | Qualcomm® QCS8450 (Proxy) | 1.134 ms | 0 - 119 MB | NPU | RegNet | TFLITE | w8a8 | Qualcomm® SA7255P | 1.992 ms | 0 - 76 MB | NPU | RegNet | TFLITE | w8a8 | Qualcomm® SA8295P | 1.45 ms | 0 - 71 MB | NPU | RegNet | TFLITE | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.428 ms | 0 - 81 MB | NPU | RegNet | TFLITE | w8a8 | Snapdragon® 7 Gen 4 Mobile | 0.993 ms | 0 - 72 MB | NPU | RegNet | TFLITE | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.393 ms | 0 - 80 MB | NPU ## License * The license for the original implementation of RegNet can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE). ## References * [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).