new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Specification-Guided Vulnerability Detection with Large Language Models

Large language models (LLMs) have achieved remarkable progress in code understanding tasks. However, they demonstrate limited performance in vulnerability detection and struggle to distinguish vulnerable code from patched code. We argue that LLMs lack understanding of security specifications -- the expectations about how code should behave to remain safe. When code behavior differs from these expectations, it becomes a potential vulnerability. However, such knowledge is rarely explicit in training data, leaving models unable to reason about security flaws. We propose VulInstruct, a specification-guided approach that systematically extracts security specifications from historical vulnerabilities to detect new ones. VulInstruct constructs a specification knowledge base from two perspectives: (i) General specifications from high-quality patches across projects, capturing fundamental safe behaviors; and (ii) Domain-specific specifications from repeated violations in particular repositories relevant to the target code. VulInstruct retrieves relevant past cases and specifications, enabling LLMs to reason about expected safe behaviors rather than relying on surface patterns. We evaluate VulInstruct under strict criteria requiring both correct predictions and valid reasoning. On PrimeVul, VulInstruct achieves 45.0% F1-score (32.7% improvement) and 37.7% recall (50.8% improvement) compared to baselines, while uniquely detecting 24.3% of vulnerabilities -- 2.4x more than any baseline. In pair-wise evaluation, VulInstruct achieves 32.3% relative improvement. VulInstruct also discovered a previously unknown high-severity vulnerability (CVE-2025-56538) in production code, demonstrating practical value for real-world vulnerability discovery. All code and supplementary materials are available at https://github.com/zhuhaopku/VulInstruct-temp.

  • 10 authors
·
Nov 5, 2025

Agent2World: Learning to Generate Symbolic World Models via Adaptive Multi-Agent Feedback

Symbolic world models (e.g., PDDL domains or executable simulators) are central to model-based planning, but training LLMs to generate such world models is limited by the lack of large-scale verifiable supervision. Current approaches rely primarily on static validation methods that fail to catch behavior-level errors arising from interactive execution. In this paper, we propose Agent2World, a tool-augmented multi-agent framework that achieves strong inference-time world-model generation and also serves as a data engine for supervised fine-tuning, by grounding generation in multi-agent feedback. Agent2World follows a three-stage pipeline: (i) A Deep Researcher agent performs knowledge synthesis by web searching to address specification gaps; (ii) A Model Developer agent implements executable world models; And (iii) a specialized Testing Team conducts adaptive unit testing and simulation-based validation. Agent2World demonstrates superior inference-time performance across three benchmarks spanning both Planning Domain Definition Language (PDDL) and executable code representations, achieving consistent state-of-the-art results. Beyond inference, Testing Team serves as an interactive environment for the Model Developer, providing behavior-aware adaptive feedback that yields multi-turn training trajectories. The model fine-tuned on these trajectories substantially improves world-model generation, yielding an average relative gain of 30.95% over the same model before training. Project page: https://agent2world.github.io.

  • 12 authors
·
Dec 26, 2025

MultiFuzz: A Dense Retrieval-based Multi-Agent System for Network Protocol Fuzzing

Traditional protocol fuzzing techniques, such as those employed by AFL-based systems, often lack effectiveness due to a limited semantic understanding of complex protocol grammars and rigid seed mutation strategies. Recent works, such as ChatAFL, have integrated Large Language Models (LLMs) to guide protocol fuzzing and address these limitations, pushing protocol fuzzers to wider exploration of the protocol state space. But ChatAFL still faces issues like unreliable output, LLM hallucinations, and assumptions of LLM knowledge about protocol specifications. This paper introduces MultiFuzz, a novel dense retrieval-based multi-agent system designed to overcome these limitations by integrating semantic-aware context retrieval, specialized agents, and structured tool-assisted reasoning. MultiFuzz utilizes agentic chunks of protocol documentation (RFC Documents) to build embeddings in a vector database for a retrieval-augmented generation (RAG) pipeline, enabling agents to generate more reliable and structured outputs, enhancing the fuzzer in mutating protocol messages with enhanced state coverage and adherence to syntactic constraints. The framework decomposes the fuzzing process into modular groups of agents that collaborate through chain-of-thought reasoning to dynamically adapt fuzzing strategies based on the retrieved contextual knowledge. Experimental evaluations on the Real-Time Streaming Protocol (RTSP) demonstrate that MultiFuzz significantly improves branch coverage and explores deeper protocol states and transitions over state-of-the-art (SOTA) fuzzers such as NSFuzz, AFLNet, and ChatAFL. By combining dense retrieval, agentic coordination, and language model reasoning, MultiFuzz establishes a new paradigm in autonomous protocol fuzzing, offering a scalable and extensible foundation for future research in intelligent agentic-based fuzzing systems.

  • 5 authors
·
Aug 19, 2025

Semantic Operators: A Declarative Model for Rich, AI-based Data Processing

The semantic capabilities of large language models (LLMs) have the potential to enable rich analytics and reasoning over vast knowledge corpora. Unfortunately, existing systems either empirically optimize expensive LLM-powered operations with no performance guarantees, or serve a limited set of row-wise LLM operations, providing limited robustness, expressiveness and usability. We introduce semantic operators, the first formalism for declarative and general-purpose AI-based transformations based on natural language specifications (e.g., filtering, sorting, joining or aggregating records using natural language criteria). Each operator opens a rich space for execution plans, similar to relational operators. Our model specifies the expected behavior of each operator with a high-quality gold algorithm, and we develop an optimization framework that reduces cost, while providing accuracy guarantees with respect to a gold algorithm. Using this approach, we propose several novel optimizations to accelerate semantic filtering, joining, group-by and top-k operations by up to 1,000times. We implement semantic operators in the LOTUS system and demonstrate LOTUS' effectiveness on real, bulk-semantic processing applications, including fact-checking, biomedical multi-label classification, search, and topic analysis. We show that the semantic operator model is expressive, capturing state-of-the-art AI pipelines in a few operator calls, and making it easy to express new pipelines that match or exceed quality of recent LLM-based analytic systems by up to 170%, while offering accuracy guarantees. Overall, LOTUS programs match or exceed the accuracy of state-of-the-art AI pipelines for each task while running up to 3.6times faster than the highest-quality baselines. LOTUS is publicly available at https://github.com/lotus-data/lotus.

  • 7 authors
·
Jul 16, 2024