Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBuying Information for Stochastic Optimization
Stochastic optimization is one of the central problems in Machine Learning and Theoretical Computer Science. In the standard model, the algorithm is given a fixed distribution known in advance. In practice though, one may acquire at a cost extra information to make better decisions. In this paper, we study how to buy information for stochastic optimization and formulate this question as an online learning problem. Assuming the learner has an oracle for the original optimization problem, we design a 2-competitive deterministic algorithm and a e/(e-1)-competitive randomized algorithm for buying information. We show that this ratio is tight as the problem is equivalent to a robust generalization of the ski-rental problem, which we call super-martingale stopping. We also consider an adaptive setting where the learner can choose to buy information after taking some actions for the underlying optimization problem. We focus on the classic optimization problem, Min-Sum Set Cover, where the goal is to quickly find an action that covers a given request drawn from a known distribution. We provide an 8-competitive algorithm running in polynomial time that chooses actions and decides when to buy information about the underlying request.
Time Fairness in Online Knapsack Problems
The online knapsack problem is a classic problem in the field of online algorithms. Its canonical version asks how to pack items of different values and weights arriving online into a capacity-limited knapsack so as to maximize the total value of the admitted items. Although optimal competitive algorithms are known for this problem, they may be fundamentally unfair, i.e., individual items may be treated inequitably in different ways. We formalize a practically-relevant notion of time fairness which effectively models a trade off between static and dynamic pricing in a motivating application such as cloud resource allocation, and show that existing algorithms perform poorly under this metric. We propose a parameterized deterministic algorithm where the parameter precisely captures the Pareto-optimal trade-off between fairness (static pricing) and competitiveness (dynamic pricing). We show that randomization is theoretically powerful enough to be simultaneously competitive and fair; however, it does not work well in experiments. To further improve the trade-off between fairness and competitiveness, we develop a nearly-optimal learning-augmented algorithm which is fair, consistent, and robust (competitive), showing substantial performance improvements in numerical experiments.
Mixing predictions for online metric algorithms
A major technique in learning-augmented online algorithms is combining multiple algorithms or predictors. Since the performance of each predictor may vary over time, it is desirable to use not the single best predictor as a benchmark, but rather a dynamic combination which follows different predictors at different times. We design algorithms that combine predictions and are competitive against such dynamic combinations for a wide class of online problems, namely, metrical task systems. Against the best (in hindsight) unconstrained combination of ell predictors, we obtain a competitive ratio of O(ell^2), and show that this is best possible. However, for a benchmark with slightly constrained number of switches between different predictors, we can get a (1+epsilon)-competitive algorithm. Moreover, our algorithms can be adapted to access predictors in a bandit-like fashion, querying only one predictor at a time. An unexpected implication of one of our lower bounds is a new structural insight about covering formulations for the k-server problem.
Multi-agent Online Scheduling: MMS Allocations for Indivisible Items
We consider the problem of fairly allocating a sequence of indivisible items that arrive online in an arbitrary order to a group of n agents with additive normalized valuation functions. We consider both the allocation of goods and chores and propose algorithms for approximating maximin share (MMS) allocations. When agents have identical valuation functions the problem coincides with the semi-online machine covering problem (when items are goods) and load balancing problem (when items are chores), for both of which optimal competitive ratios have been achieved. In this paper, we consider the case when agents have general additive valuation functions. For the allocation of goods, we show that no competitive algorithm exists even when there are only three agents and propose an optimal 0.5-competitive algorithm for the case of two agents. For the allocation of chores, we propose a (2-1/n)-competitive algorithm for n>=3 agents and a square root of 2 (approximately 1.414)-competitive algorithm for two agents. Additionally, we show that no algorithm can do better than 15/11 (approximately 1.364)-competitive for two agents.
Competitive Gradient Optimization
We study the problem of convergence to a stationary point in zero-sum games. We propose competitive gradient optimization (CGO ), a gradient-based method that incorporates the interactions between the two players in zero-sum games for optimization updates. We provide continuous-time analysis of CGO and its convergence properties while showing that in the continuous limit, CGO predecessors degenerate to their gradient descent ascent (GDA) variants. We provide a rate of convergence to stationary points and further propose a generalized class of alpha-coherent function for which we provide convergence analysis. We show that for strictly alpha-coherent functions, our algorithm convergences to a saddle point. Moreover, we propose optimistic CGO (OCGO), an optimistic variant, for which we show convergence rate to saddle points in alpha-coherent class of functions.
A Simple and Provable Scaling Law for the Test-Time Compute of Large Language Models
We propose a general two-stage algorithm that enjoys a provable scaling law for the test-time compute of large language models (LLMs). Given an input problem, the proposed algorithm first generates N candidate solutions, and then chooses the best one via a multiple-round knockout tournament where each pair of candidates are compared for K times and only the winners move on to the next round. In a minimalistic implementation, both stages can be executed with a black-box LLM alone and nothing else (e.g., no external verifier or reward model), and a total of N times (K + 1) highly parallelizable LLM calls are needed for solving an input problem. Assuming that a generated candidate solution is correct with probability p_{gen} > 0 and a comparison between a pair of correct and incorrect solutions identifies the right winner with probability p_{comp} > 0.5 (i.e., better than a random guess), we prove theoretically that the failure probability of the proposed algorithm decays to zero exponentially with respect to N and K: $P(final output is incorrect) le (1 - p_{gen})^N + lceil log_2 N rceil e^{-2 K (p_{comp} - 0.5)^2}.$ Our empirical results with the challenging MMLU-Pro benchmark validate the technical assumptions, as well as the efficacy of the proposed algorithm and the gains from scaling up its test-time compute.
CompeteSMoE -- Statistically Guaranteed Mixture of Experts Training via Competition
Sparse mixture of experts (SMoE) offers an appealing solution to scale up the model complexity beyond the mean of increasing the network's depth or width. However, we argue that effective SMoE training remains challenging because of the suboptimal routing process where experts that perform computation do not directly contribute to the routing process. In this work, we propose competition, a novel mechanism to route tokens to experts with the highest neural response. Theoretically, we show that the competition mechanism enjoys a better sample efficiency than the traditional softmax routing. Furthermore, we develop CompeteSMoE, a simple yet effective algorithm to train large language models by deploying a router to learn the competition policy, thus enjoying strong performances at a low training overhead. Our extensive empirical evaluations on both the visual instruction tuning and language pre-training tasks demonstrate the efficacy, robustness, and scalability of CompeteSMoE compared to state-of-the-art SMoE strategies. We have made the implementation available at: https://github.com/Fsoft-AIC/CompeteSMoE. This work is an improved version of the previous study at arXiv:2402.02526
Minimalistic Predictions to Schedule Jobs with Online Precedence Constraints
We consider non-clairvoyant scheduling with online precedence constraints, where an algorithm is oblivious to any job dependencies and learns about a job only if all of its predecessors have been completed. Given strong impossibility results in classical competitive analysis, we investigate the problem in a learning-augmented setting, where an algorithm has access to predictions without any quality guarantee. We discuss different prediction models: novel problem-specific models as well as general ones, which have been proposed in previous works. We present lower bounds and algorithmic upper bounds for different precedence topologies, and thereby give a structured overview on which and how additional (possibly erroneous) information helps for designing better algorithms. Along the way, we also improve bounds on traditional competitive ratios for existing algorithms.
Online Matching with Stochastic Rewards: Advanced Analyses Using Configuration Linear Programs
Mehta and Panigrahi (2012) proposed Online Matching with Stochastic Rewards, which generalizes the Online Bipartite Matching problem of Karp, Vazirani, and Vazirani (1990) by associating the edges with success probabilities. This new feature captures the pay-per-click model in online advertising. Recently, Huang and Zhang (2020) studied this problem under the online primal dual framework using the Configuration Linear Program (LP), and got the best known competitive ratios of the Stochastic Balance algorithm. Their work suggests that the more expressive Configuration LP is more suitable for this problem than the Matching LP. This paper advances the theory of Configuration LP in two directions. Our technical contribution includes a characterization of the joint matching outcome of an offline vertex and all its neighbors. This characterization may be of independent interest, and is aligned with the spirit of Configuration LP. By contrast, previous analyses of Ranking generally focus on only one neighbor. Second, we designed a Stochastic Configuration LP that captures a stochastic benchmark proposed by Goyal and Udwani (2020), who used a Path-based LP. The Stochastic Configuration LP is smaller and simpler than the Path-based LP. Moreover, using the new LP we improved the competitive ratio of Stochastic Balance from 0.596 to 0.611 when the success probabilities are infinitesimal, and to 0.613 when the success probabilities are further equal.
Parallel Heuristic Exploration for Additive Complexity Reduction in Fast Matrix Multiplication
This paper presents a parallel random-search method for reducing additive complexity in fast matrix multiplication. The approach replaces expensive exact evaluation with fast heuristic scoring, including the new Greedy-Intersections strategy. The method runs many independent common subexpression elimination processes in parallel, exploring the search space through random pair substitutions and diverse selection strategies while sharing promising partial solutions. Tested on 164 ternary-coefficient schemes, the method achieves lower addition counts than the state-of-the-art Greedy-Potential on 103 schemes, matches it on 59, and is outperformed on 2. For most schemes, it gives equal or better results while being much faster, making it practical for algorithm exploration. All software and results are open source.
Learning for Edge-Weighted Online Bipartite Matching with Robustness Guarantees
Many problems, such as online ad display, can be formulated as online bipartite matching. The crucial challenge lies in the nature of sequentially-revealed online item information, based on which we make irreversible matching decisions at each step. While numerous expert online algorithms have been proposed with bounded worst-case competitive ratios, they may not offer satisfactory performance in average cases. On the other hand, reinforcement learning (RL) has been applied to improve the average performance, but it lacks robustness and can perform arbitrarily poorly. In this paper, we propose a novel RL-based approach to edge-weighted online bipartite matching with robustness guarantees (LOMAR), achieving both good average-case and worst-case performance. The key novelty of LOMAR is a new online switching operation which, based on a judicious condition to hedge against future uncertainties, decides whether to follow the expert's decision or the RL decision for each online item. We prove that for any rhoin[0,1], LOMAR is rho-competitive against any given expert online algorithm. To improve the average performance, we train the RL policy by explicitly considering the online switching operation. Finally, we run empirical experiments to demonstrate the advantages of LOMAR compared to existing baselines. Our code is available at: https://github.com/Ren-Research/LOMAR
Bandits with Replenishable Knapsacks: the Best of both Worlds
The bandits with knapsack (BwK) framework models online decision-making problems in which an agent makes a sequence of decisions subject to resource consumption constraints. The traditional model assumes that each action consumes a non-negative amount of resources and the process ends when the initial budgets are fully depleted. We study a natural generalization of the BwK framework which allows non-monotonic resource utilization, i.e., resources can be replenished by a positive amount. We propose a best-of-both-worlds primal-dual template that can handle any online learning problem with replenishment for which a suitable primal regret minimizer exists. In particular, we provide the first positive results for the case of adversarial inputs by showing that our framework guarantees a constant competitive ratio alpha when B=Omega(T) or when the possible per-round replenishment is a positive constant. Moreover, under a stochastic input model, our algorithm yields an instance-independent O(T^{1/2}) regret bound which complements existing instance-dependent bounds for the same setting. Finally, we provide applications of our framework to some economic problems of practical relevance.
Learning to Actively Learn: A Robust Approach
This work proposes a procedure for designing algorithms for specific adaptive data collection tasks like active learning and pure-exploration multi-armed bandits. Unlike the design of traditional adaptive algorithms that rely on concentration of measure and careful analysis to justify the correctness and sample complexity of the procedure, our adaptive algorithm is learned via adversarial training over equivalence classes of problems derived from information theoretic lower bounds. In particular, a single adaptive learning algorithm is learned that competes with the best adaptive algorithm learned for each equivalence class. Our procedure takes as input just the available queries, set of hypotheses, loss function, and total query budget. This is in contrast to existing meta-learning work that learns an adaptive algorithm relative to an explicit, user-defined subset or prior distribution over problems which can be challenging to define and be mismatched to the instance encountered at test time. This work is particularly focused on the regime when the total query budget is very small, such as a few dozen, which is much smaller than those budgets typically considered by theoretically derived algorithms. We perform synthetic experiments to justify the stability and effectiveness of the training procedure, and then evaluate the method on tasks derived from real data including a noisy 20 Questions game and a joke recommendation task.
Identifying Copeland Winners in Dueling Bandits with Indifferences
We consider the task of identifying the Copeland winner(s) in a dueling bandits problem with ternary feedback. This is an underexplored but practically relevant variant of the conventional dueling bandits problem, in which, in addition to strict preference between two arms, one may observe feedback in the form of an indifference. We provide a lower bound on the sample complexity for any learning algorithm finding the Copeland winner(s) with a fixed error probability. Moreover, we propose POCOWISTA, an algorithm with a sample complexity that almost matches this lower bound, and which shows excellent empirical performance, even for the conventional dueling bandits problem. For the case where the preference probabilities satisfy a specific type of stochastic transitivity, we provide a refined version with an improved worst case sample complexity.
CompeteSMoE -- Effective Training of Sparse Mixture of Experts via Competition
Sparse mixture of experts (SMoE) offers an appealing solution to scale up the model complexity beyond the mean of increasing the network's depth or width. However, effective training of SMoE has proven to be challenging due to the representation collapse issue, which causes parameter redundancy and limited representation potentials. In this work, we propose a competition mechanism to address this fundamental challenge of representation collapse. By routing inputs only to experts with the highest neural response, we show that, under mild assumptions, competition enjoys the same convergence rate as the optimal estimator. We further propose CompeteSMoE, an effective and efficient algorithm to train large language models by deploying a simple router that predicts the competition outcomes. Consequently, CompeteSMoE enjoys strong performance gains from the competition routing policy while having low computation overheads. Our extensive empirical evaluations on two transformer architectures and a wide range of tasks demonstrate the efficacy, robustness, and scalability of CompeteSMoE compared to state-of-the-art SMoE strategies.
Active Ranking of Experts Based on their Performances in Many Tasks
We consider the problem of ranking n experts based on their performances on d tasks. We make a monotonicity assumption stating that for each pair of experts, one outperforms the other on all tasks. We consider the sequential setting where in each round, the learner has access to noisy evaluations of actively chosen pair of expert-task, given the information available up to the actual round. Given a confidence parameter delta in (0, 1), we provide strategies allowing to recover the correct ranking of experts and develop a bound on the total number of queries made by our algorithm that hold with probability at least 1 -- delta. We show that our strategy is adaptive to the complexity of the problem (our bounds are instance dependent), and develop matching lower bounds up to a poly-logarithmic factor. Finally, we adapt our strategy to the relaxed problem of best expert identification and provide numerical simulation consistent with our theoretical results.
Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching
We consider solving equality-constrained nonlinear, nonconvex optimization problems. This class of problems appears widely in a variety of applications in machine learning and engineering, ranging from constrained deep neural networks, to optimal control, to PDE-constrained optimization. We develop an adaptive inexact Newton method for this problem class. In each iteration, we solve the Lagrangian Newton system inexactly via a randomized iterative sketching solver, and select a suitable stepsize by performing line search on an exact augmented Lagrangian merit function. The randomized solvers have advantages over deterministic linear system solvers by significantly reducing per-iteration flops complexity and storage cost, when equipped with suitable sketching matrices. Our method adaptively controls the accuracy of the randomized solver and the penalty parameters of the exact augmented Lagrangian, to ensure that the inexact Newton direction is a descent direction of the exact augmented Lagrangian. This allows us to establish a global almost sure convergence. We also show that a unit stepsize is admissible locally, so that our method exhibits a local linear convergence. Furthermore, we prove that the linear convergence can be strengthened to superlinear convergence if we gradually sharpen the adaptive accuracy condition on the randomized solver. We demonstrate the superior performance of our method on benchmark nonlinear problems in CUTEst test set, constrained logistic regression with data from LIBSVM, and a PDE-constrained problem.
Mechanisms that play a game, not toss a coin
Randomized mechanisms can have good normative properties compared to their deterministic counterparts. However, randomized mechanisms are problematic in several ways such as in their verifiability. We propose here to derandomize such mechanisms by having agents play a game instead of tossing a coin. The game is designed so an agent's best action is to play randomly, and this play then injects ``randomness'' into the mechanism. This derandomization retains many of the good normative properties of the original randomized mechanism but gives a mechanism that is deterministic and easy, for instance, to audit. We consider three related methods to derandomize randomized mechanism in six different domains: voting, facility location, task allocation, school choice, peer selection, and resource allocation. We propose a number of novel derandomized mechanisms for these six domains with good normative properties. Each mechanism has a mixed Nash equilibrium in which agents play a modular arithmetic game with an uniform mixed strategy. In all but one mixed Nash equilibrium, agents report their preferences over the original problem sincerely. The derandomized methods are thus ``quasi-strategy proof''. In one domain, we additionally show that a new and desirable normative property emerges as a result of derandomization.
Non-Stationary Dueling Bandits
We study the non-stationary dueling bandits problem with K arms, where the time horizon T consists of M stationary segments, each of which is associated with its own preference matrix. The learner repeatedly selects a pair of arms and observes a binary preference between them as feedback. To minimize the accumulated regret, the learner needs to pick the Condorcet winner of each stationary segment as often as possible, despite preference matrices and segment lengths being unknown. We propose the Beat, the, Winner, Reset algorithm and prove a bound on its expected binary weak regret in the stationary case, which tightens the bound of current state-of-art algorithms. We also show a regret bound for the non-stationary case, without requiring knowledge of M or T. We further propose and analyze two meta-algorithms, DETECT for weak regret and Monitored, Dueling, Bandits for strong regret, both based on a detection-window approach that can incorporate any dueling bandit algorithm as a black-box algorithm. Finally, we prove a worst-case lower bound for expected weak regret in the non-stationary case.
AutoCode: LLMs as Problem Setters for Competitive Programming
Writing competitive programming problems is exacting. Authors must: set constraints, input distributions, and edge cases that rule out shortcuts; target specific algorithms (e.g., max-flow, dynamic programming, data structures); and calibrate complexity beyond the reach of most competitors. We argue that this makes for an ideal test of general large language model capabilities and study whether they can do this reliably. We introduce AutoCode, which uses multiple rounds of validation to yield competition-grade problem statements and test cases. On held-out problems, AutoCode test suites approach 99% consistency with official judgments, a significant improvement over current state-of-the-art methods like HardTests, which achieve less than 81%. Furthermore, starting with a random seed problem, AutoCode can create novel variants with reference and brute-force solutions. By cross-verifying these generated solutions against test cases, we can further filter out malformed problems. Our system ensures high correctness, as verified by human experts. AutoCode successfully produces novel problems judged by Grandmaster-level (top 0.3%) competitive programmers to be of contest quality.
Multiagent Evaluation under Incomplete Information
This paper investigates the evaluation of learned multiagent strategies in the incomplete information setting, which plays a critical role in ranking and training of agents. Traditionally, researchers have relied on Elo ratings for this purpose, with recent works also using methods based on Nash equilibria. Unfortunately, Elo is unable to handle intransitive agent interactions, and other techniques are restricted to zero-sum, two-player settings or are limited by the fact that the Nash equilibrium is intractable to compute. Recently, a ranking method called α-Rank, relying on a new graph-based game-theoretic solution concept, was shown to tractably apply to general games. However, evaluations based on Elo or α-Rank typically assume noise-free game outcomes, despite the data often being collected from noisy simulations, making this assumption unrealistic in practice. This paper investigates multiagent evaluation in the incomplete information regime, involving general-sum many-player games with noisy outcomes. We derive sample complexity guarantees required to confidently rank agents in this setting. We propose adaptive algorithms for accurate ranking, provide correctness and sample complexity guarantees, then introduce a means of connecting uncertainties in noisy match outcomes to uncertainties in rankings. We evaluate the performance of these approaches in several domains, including Bernoulli games, a soccer meta-game, and Kuhn poker.
Fully Dynamic Submodular Maximization over Matroids
Maximizing monotone submodular functions under a matroid constraint is a classic algorithmic problem with multiple applications in data mining and machine learning. We study this classic problem in the fully dynamic setting, where elements can be both inserted and deleted in real-time. Our main result is a randomized algorithm that maintains an efficient data structure with an O(k^2) amortized update time (in the number of additions and deletions) and yields a 4-approximate solution, where k is the rank of the matroid.
Machine Learning for Online Algorithm Selection under Censored Feedback
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms. For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime. As the latter is known to exhibit a heavy-tail distribution, an algorithm is normally stopped when exceeding a predefined upper time limit. As a consequence, machine learning methods used to optimize an algorithm selection strategy in a data-driven manner need to deal with right-censored samples, a problem that has received little attention in the literature so far. In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem. Moreover, we adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon. In an extensive experimental evaluation on an adapted version of the ASlib benchmark, we demonstrate that theoretically well-founded methods based on Thompson sampling perform specifically strong and improve in comparison to existing methods.
Faster Algorithms for Text-to-Pattern Hamming Distances
We study the classic Text-to-Pattern Hamming Distances problem: given a pattern P of length m and a text T of length n, both over a polynomial-size alphabet, compute the Hamming distance between P and T[i, ., . , i+m-1] for every shift i, under the standard Word-RAM model with Theta(log n)-bit words. - We provide an O(nm) time Las Vegas randomized algorithm for this problem, beating the decades-old O(n m log m) running time [Abrahamson, SICOMP 1987]. We also obtain a deterministic algorithm, with a slightly higher O(nm(log mloglog m)^{1/4}) running time. Our randomized algorithm extends to the k-bounded setting, with running time Obig(n+nk{m}big), removing all the extra logarithmic factors from earlier algorithms [Gawrychowski and Uzna\'{n}ski, ICALP 2018; Chan, Golan, Kociumaka, Kopelowitz and Porat, STOC 2020]. - For the (1+epsilon)-approximate version of Text-to-Pattern Hamming Distances, we give an O(epsilon^{-0.93}n) time Monte Carlo randomized algorithm, beating the previous O(epsilon^{-1}n) running time [Kopelowitz and Porat, FOCS 2015; Kopelowitz and Porat, SOSA 2018]. Our approximation algorithm exploits a connection with 3SUM, and uses a combination of Fredman's trick, equality matrix product, and random sampling; in particular, we obtain new results on approximate counting versions of 3SUM and Exact Triangle, which may be of independent interest. Our exact algorithms use a novel combination of hashing, bit-packed FFT, and recursion; in particular, we obtain a faster algorithm for computing the sumset of two integer sets, in the regime when the universe size is close to quadratic in the number of elements. We also prove a fine-grained equivalence between the exact Text-to-Pattern Hamming Distances problem and a range-restricted, counting version of 3SUM.
LLM Swiss Round: Aggregating Multi-Benchmark Performance via Competitive Swiss-System Dynamics
The rapid proliferation of Large Language Models (LLMs) and diverse specialized benchmarks necessitates a shift from fragmented, task-specific metrics to a holistic, competitive ranking system that effectively aggregates performance across multiple ability dimensions. Primarily using static scoring, current evaluation methods are fundamentally limited. They struggle to determine the proper mix ratio across diverse benchmarks, and critically, they fail to capture a model's dynamic competitive fitness or its vulnerability when confronted with sequential, high-stakes tasks. To address this, we introduce the novel Competitive Swiss-System Dynamics (CSD) framework. CSD simulates a multi-round, sequential contest where models are dynamically paired across a curated sequence of benchmarks based on their accumulated win-loss record. And Monte Carlo Simulation (N=100,000 iterations) is used to approximate the statistically robust Expected Win Score (E[S_m]), which eliminates the noise of random pairing and early-round luck. Furthermore, we implement a Failure Sensitivity Analysis by parameterizing the per-round elimination quantity (T_k), which allows us to profile models based on their risk appetite--distinguishing between robust generalists and aggressive specialists. We demonstrate that CSD provides a more nuanced and context-aware ranking than traditional aggregate scoring and static pairwise models, representing a vital step towards risk-informed, next-generation LLM evaluation.
Random Rank: The One and Only Strategyproof and Proportionally Fair Randomized Facility Location Mechanism
Proportionality is an attractive fairness concept that has been applied to a range of problems including the facility location problem, a classic problem in social choice. In our work, we propose a concept called Strong Proportionality, which ensures that when there are two groups of agents at different locations, both groups incur the same total cost. We show that although Strong Proportionality is a well-motivated and basic axiom, there is no deterministic strategyproof mechanism satisfying the property. We then identify a randomized mechanism called Random Rank (which uniformly selects a number k between 1 to n and locates the facility at the k'th highest agent location) which satisfies Strong Proportionality in expectation. Our main theorem characterizes Random Rank as the unique mechanism that achieves universal truthfulness, universal anonymity, and Strong Proportionality in expectation among all randomized mechanisms. Finally, we show via the AverageOrRandomRank mechanism that even stronger ex-post fairness guarantees can be achieved by weakening universal truthfulness to strategyproofness in expectation.
Convex Optimization: Algorithms and Complexity
This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. Starting from the fundamental theory of black-box optimization, the material progresses towards recent advances in structural optimization and stochastic optimization. Our presentation of black-box optimization, strongly influenced by Nesterov's seminal book and Nemirovski's lecture notes, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. We also pay special attention to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging) and discuss their relevance in machine learning. We provide a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization we discuss stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. We also briefly touch upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.
Prioritized Unit Propagation with Periodic Resetting is (Almost) All You Need for Random SAT Solving
We propose prioritized unit propagation with periodic resetting, which is a simple but surprisingly effective algorithm for solving random SAT instances that are meant to be hard. In particular, an evaluation on the Random Track of the 2017 and 2018 SAT competitions shows that a basic prototype of this simple idea already ranks at second place in both years. We share this observation in the hope that it helps the SAT community better understand the hardness of random instances used in competitions and inspire other interesting ideas on SAT solving.
Human-Level Competitive Pokémon via Scalable Offline Reinforcement Learning with Transformers
Competitive Pok\'emon Singles (CPS) is a popular strategy game where players learn to exploit their opponent based on imperfect information in battles that can last more than one hundred stochastic turns. AI research in CPS has been led by heuristic tree search and online self-play, but the game may also create a platform to study adaptive policies trained offline on large datasets. We develop a pipeline to reconstruct the first-person perspective of an agent from logs saved from the third-person perspective of a spectator, thereby unlocking a dataset of real human battles spanning more than a decade that grows larger every day. This dataset enables a black-box approach where we train large sequence models to adapt to their opponent based solely on their input trajectory while selecting moves without explicit search of any kind. We study a progression from imitation learning to offline RL and offline fine-tuning on self-play data in the hardcore competitive setting of Pok\'emon's four oldest (and most partially observed) game generations. The resulting agents outperform a recent LLM Agent approach and a strong heuristic search engine. While playing anonymously in online battles against humans, our best agents climb to rankings inside the top 10% of active players.
Hardest Monotone Functions for Evolutionary Algorithms
The study of hardest and easiest fitness landscapes is an active area of research. Recently, Kaufmann, Larcher, Lengler and Zou conjectured that for the self-adjusting (1,lambda)-EA, Adversarial Dynamic BinVal (ADBV) is the hardest dynamic monotone function to optimize. We introduce the function Switching Dynamic BinVal (SDBV) which coincides with ADBV whenever the number of remaining zeros in the search point is strictly less than n/2, where n denotes the dimension of the search space. We show, using a combinatorial argument, that for the (1+1)-EA with any mutation rate p in [0,1], SDBV is drift-minimizing among the class of dynamic monotone functions. Our construction provides the first explicit example of an instance of the partially-ordered evolutionary algorithm (PO-EA) model with parameterized pessimism introduced by Colin, Doerr and F\'erey, building on work of Jansen. We further show that the (1+1)-EA optimizes SDBV in Theta(n^{3/2}) generations. Our simulations demonstrate matching runtimes for both static and self-adjusting (1,lambda) and (1+lambda)-EA. We further show, using an example of fixed dimension, that drift-minimization does not equal maximal runtime.
Speed-Oblivious Online Scheduling: Knowing (Precise) Speeds is not Necessary
We consider online scheduling on unrelated (heterogeneous) machines in a speed-oblivious setting, where an algorithm is unaware of the exact job-dependent processing speeds. We show strong impossibility results for clairvoyant and non-clairvoyant algorithms and overcome them in models inspired by practical settings: (i) we provide competitive learning-augmented algorithms, assuming that (possibly erroneous) predictions on the speeds are given, and (ii) we provide competitive algorithms for the speed-ordered model, where a single global order of machines according to their unknown job-dependent speeds is known. We prove strong theoretical guarantees and evaluate our findings on a representative heterogeneous multi-core processor. These seem to be the first empirical results for scheduling algorithms with predictions that are evaluated in a non-synthetic hardware environment.
Competing for Shareable Arms in Multi-Player Multi-Armed Bandits
Competitions for shareable and limited resources have long been studied with strategic agents. In reality, agents often have to learn and maximize the rewards of the resources at the same time. To design an individualized competing policy, we model the competition between agents in a novel multi-player multi-armed bandit (MPMAB) setting where players are selfish and aim to maximize their own rewards. In addition, when several players pull the same arm, we assume that these players averagely share the arms' rewards by expectation. Under this setting, we first analyze the Nash equilibrium when arms' rewards are known. Subsequently, we propose a novel SelfishMPMAB with Averaging Allocation (SMAA) approach based on the equilibrium. We theoretically demonstrate that SMAA could achieve a good regret guarantee for each player when all players follow the algorithm. Additionally, we establish that no single selfish player can significantly increase their rewards through deviation, nor can they detrimentally affect other players' rewards without incurring substantial losses for themselves. We finally validate the effectiveness of the method in extensive synthetic experiments.
Formalizing Preferences Over Runtime Distributions
When trying to solve a computational problem, we are often faced with a choice between algorithms that are guaranteed to return the right answer but differ in their runtime distributions (e.g., SAT solvers, sorting algorithms). This paper aims to lay theoretical foundations for such choices by formalizing preferences over runtime distributions. It might seem that we should simply prefer the algorithm that minimizes expected runtime. However, such preferences would be driven by exactly how slow our algorithm is on bad inputs, whereas in practice we are typically willing to cut off occasional, sufficiently long runs before they finish. We propose a principled alternative, taking a utility-theoretic approach to characterize the scoring functions that describe preferences over algorithms. These functions depend on the way our value for solving our problem decreases with time and on the distribution from which captimes are drawn. We describe examples of realistic utility functions and show how to leverage a maximum-entropy approach for modeling underspecified captime distributions. Finally, we show how to efficiently estimate an algorithm's expected utility from runtime samples.
Monte Carlo Permutation Search
We propose Monte Carlo Permutation Search (MCPS), a general-purpose Monte Carlo Tree Search (MCTS) algorithm that improves upon the GRAVE algorithm. MCPS is relevant when deep reinforcement learning is not an option, or when the computing power available before play is not substantial, such as in General Game Playing, for example. The principle of MCPS is to include in the exploration term of a node the statistics on all the playouts that contain all the moves on the path from the root to the node. We extensively test MCPS on a variety of games: board games, wargame, investment game, video game and multi-player games. MCPS has better results than GRAVE in all the two-player games. It has equivalent results for multi-player games because these games are inherently balanced even when players have different strengths. We also show that using abstract codes for moves instead of exact codes can be beneficial to both MCPS and GRAVE, as they improve the permutation statistics and the AMAF statistics. We also provide a mathematical derivation of the formulas used for weighting the three sources of statistics. These formulas are an improvement on the GRAVE formula since they no longer use the bias hyperparameter of GRAVE. Moreover, MCPS is not sensitive to the ref hyperparameter.
Making RL with Preference-based Feedback Efficient via Randomization
Reinforcement Learning algorithms that learn from human feedback (RLHF) need to be efficient in terms of statistical complexity, computational complexity, and query complexity. In this work, we consider the RLHF setting where the feedback is given in the format of preferences over pairs of trajectories. In the linear MDP model, using randomization in algorithm design, we present an algorithm that is sample efficient (i.e., has near-optimal worst-case regret bounds) and has polynomial running time (i.e., computational complexity is polynomial with respect to relevant parameters). Our algorithm further minimizes the query complexity through a novel randomized active learning procedure. In particular, our algorithm demonstrates a near-optimal tradeoff between the regret bound and the query complexity. To extend the results to more general nonlinear function approximation, we design a model-based randomized algorithm inspired by the idea of Thompson sampling. Our algorithm minimizes Bayesian regret bound and query complexity, again achieving a near-optimal tradeoff between these two quantities. Computation-wise, similar to the prior Thompson sampling algorithms under the regular RL setting, the main computation primitives of our algorithm are Bayesian supervised learning oracles which have been heavily investigated on the empirical side when applying Thompson sampling algorithms to RL benchmark problems.
Modified LAB Algorithm with Clustering-based Search Space Reduction Method for solving Engineering Design Problems
A modified LAB algorithm is introduced in this paper. It builds upon the original LAB algorithm (Reddy et al. 2023), which is a socio-inspired algorithm that models competitive and learning behaviours within a group, establishing hierarchical roles. The proposed algorithm incorporates the roulette wheel approach and a reduction factor introducing inter-group competition and iteratively narrowing down the sample space. The algorithm is validated by solving the benchmark test problems from CEC 2005 and CEC 2017. The solutions are validated using standard statistical tests such as two-sided and pairwise signed rank Wilcoxon test and Friedman rank test. The algorithm exhibited improved and superior robustness as well as search space exploration capabilities. Furthermore, a Clustering-Based Search Space Reduction (C-SSR) method is proposed, making the algorithm capable to solve constrained problems. The C-SSR method enables the algorithm to identify clusters of feasible regions, satisfying the constraints and contributing to achieve the optimal solution. This method demonstrates its effectiveness as a potential alternative to traditional constraint handling techniques. The results obtained using the Modified LAB algorithm are then compared with those achieved by other recent metaheuristic algorithms.
Plus Strategies are Exponentially Slower for Planted Optima of Random Height
We compare the (1,lambda)-EA and the (1 + lambda)-EA on the recently introduced benchmark DisOM, which is the OneMax function with randomly planted local optima. Previous work showed that if all local optima have the same relative height, then the plus strategy never loses more than a factor O(nlog n) compared to the comma strategy. Here we show that even small random fluctuations in the heights of the local optima have a devastating effect for the plus strategy and lead to super-polynomial runtimes. On the other hand, due to their ability to escape local optima, comma strategies are unaffected by the height of the local optima and remain efficient. Our results hold for a broad class of possible distortions and show that the plus strategy, but not the comma strategy, is generally deceived by sparse unstructured fluctuations of a smooth landscape.
Proportional Fairness in Obnoxious Facility Location
We consider the obnoxious facility location problem (in which agents prefer the facility location to be far from them) and propose a hierarchy of distance-based proportional fairness concepts for the problem. These fairness axioms ensure that groups of agents at the same location are guaranteed to be a distance from the facility proportional to their group size. We consider deterministic and randomized mechanisms, and compute tight bounds on the price of proportional fairness. In the deterministic setting, we show that our proportional fairness axioms are incompatible with strategyproofness, and prove asymptotically tight epsilon-price of anarchy and stability bounds for proportionally fair welfare-optimal mechanisms. In the randomized setting, we identify proportionally fair and strategyproof mechanisms that give an expected welfare within a constant factor of the optimal welfare. Finally, we prove existence results for two extensions to our model.
Constrained Efficient Global Optimization of Expensive Black-box Functions
We study the problem of constrained efficient global optimization, where both the objective and constraints are expensive black-box functions that can be learned with Gaussian processes. We propose CONFIG (CONstrained efFIcient Global Optimization), a simple and effective algorithm to solve it. Under certain regularity assumptions, we show that our algorithm enjoys the same cumulative regret bound as that in the unconstrained case and similar cumulative constraint violation upper bounds. For commonly used Matern and Squared Exponential kernels, our bounds are sublinear and allow us to derive a convergence rate to the optimal solution of the original constrained problem. In addition, our method naturally provides a scheme to declare infeasibility when the original black-box optimization problem is infeasible. Numerical experiments on sampled instances from the Gaussian process, artificial numerical problems, and a black-box building controller tuning problem all demonstrate the competitive performance of our algorithm. Compared to the other state-of-the-art methods, our algorithm significantly improves the theoretical guarantees, while achieving competitive empirical performance.
Finding Optimal Arms in Non-stochastic Combinatorial Bandits with Semi-bandit Feedback and Finite Budget
We consider the combinatorial bandits problem with semi-bandit feedback under finite sampling budget constraints, in which the learner can carry out its action only for a limited number of times specified by an overall budget. The action is to choose a set of arms, whereupon feedback for each arm in the chosen set is received. Unlike existing works, we study this problem in a non-stochastic setting with subset-dependent feedback, i.e., the semi-bandit feedback received could be generated by an oblivious adversary and also might depend on the chosen set of arms. In addition, we consider a general feedback scenario covering both the numerical-based as well as preference-based case and introduce a sound theoretical framework for this setting guaranteeing sensible notions of optimal arms, which a learner seeks to find. We suggest a generic algorithm suitable to cover the full spectrum of conceivable arm elimination strategies from aggressive to conservative. Theoretical questions about the sufficient and necessary budget of the algorithm to find the best arm are answered and complemented by deriving lower bounds for any learning algorithm for this problem scenario.
An analytical framework for the Levine hats problem: new strategies, bounds and generalizations
We study the Levine hat problem, a classic combinatorial puzzle introduced by Lionel Levine in 2010. This problem involves a game in which n geq 2 players, each seeing an infinite stack of hats on each of their teammates' heads but not on their own, must simultaneously guess the index of a black hat on their own stack. If one of the players fails to do so, the team loses collectively. The players must therefore come up with a good strategy before the game starts. While the optimal winning probability V_{n} remains unknown even for n=2, we make three key advances. First, we develop a novel geometric framework for representing strategies through measurable functions, providing a new expression of V_{n} and a unified treatment of the game for finite and for infinite stacks via integral formulations. Secondly, we construct a new strategy K_{5} that reaches the conjectured optimal probability of victory : 0.35. We also show that K_{5} is part of a larger class of strategies that allow us to improve current bounds and resolve conjectured inequalities. Finally, we introduce and entirely solve a continuous generalization of the problem, demonstrating that extending to uncountable hat stacks increases the optimal winning probability to exactly 1/2. This generalization naturally leads to a broader and smoother strategic framework, within which we also describe how to compute optimal responses to a range of strategies.
Shuffle Private Stochastic Convex Optimization
In shuffle privacy, each user sends a collection of randomized messages to a trusted shuffler, the shuffler randomly permutes these messages, and the resulting shuffled collection of messages must satisfy differential privacy. Prior work in this model has largely focused on protocols that use a single round of communication to compute algorithmic primitives like means, histograms, and counts. We present interactive shuffle protocols for stochastic convex optimization. Our protocols rely on a new noninteractive protocol for summing vectors of bounded ell_2 norm. By combining this sum subroutine with mini-batch stochastic gradient descent, accelerated gradient descent, and Nesterov's smoothing method, we obtain loss guarantees for a variety of convex loss functions that significantly improve on those of the local model and sometimes match those of the central model.
Sharp Noisy Binary Search with Monotonic Probabilities
We revisit the noisy binary search model of Karp and Kleinberg, in which we have n coins with unknown probabilities p_i that we can flip. The coins are sorted by increasing p_i, and we would like to find where the probability crosses (to within varepsilon) of a target value tau. This generalized the fixed-noise model of Burnashev and Zigangirov , in which p_i = 1{2} pm varepsilon, to a setting where coins near the target may be indistinguishable from it. Karp and Kleinberg showed that Theta(1{varepsilon^2} log n) samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability 1-delta from \[ 1{C_{\tau, \varepsilon}} \cdot \left(\lg n + O(\log^{2/3} n \log^{1/3} 1{\delta} + \log 1{\delta})\right) \] samples, where C_{tau, varepsilon} is the optimal such constant achievable. For delta > n^{-o(1)} this is within 1 + o(1) of optimal, and for delta ll 1 it is the first bound within constant factors of optimal.
A New Rejection Sampling Approach to k-means++ With Improved Trade-Offs
The k-means++ seeding algorithm (Arthur & Vassilvitskii, 2007) is widely used in practice for the k-means clustering problem where the goal is to cluster a dataset X subset R ^d into k clusters. The popularity of this algorithm is due to its simplicity and provable guarantee of being O(log k) competitive with the optimal solution in expectation. However, its running time is O(|X|kd), making it expensive for large datasets. In this work, we present a simple and effective rejection sampling based approach for speeding up k-means++. Our first method runs in time O(nnz (X) + beta k^2d) while still being O(log k ) competitive in expectation. Here, beta is a parameter which is the ratio of the variance of the dataset to the optimal k-means cost in expectation and O hides logarithmic factors in k and |X|. Our second method presents a new trade-off between computational cost and solution quality. It incurs an additional scale-invariant factor of k^{-Omega( m/beta)} Var (X) in addition to the O(log k) guarantee of k-means++ improving upon a result of (Bachem et al, 2016a) who get an additional factor of m^{-1}Var(X) while still running in time O(nnz(X) + mk^2d). We perform extensive empirical evaluations to validate our theoretical results and to show the effectiveness of our approach on real datasets.
Efficient computation of rankings from pairwise comparisons
We study the ranking of individuals, teams, or objects, based on pairwise comparisons between them, using the Bradley-Terry model. Estimates of rankings within this model are commonly made using a simple iterative algorithm first introduced by Zermelo almost a century ago. Here we describe an alternative and similarly simple iteration that provably returns identical results but does so much faster -- over a hundred times faster in some cases. We demonstrate this algorithm with applications to a range of example data sets and derive a number of results regarding its convergence.
Strategic Linear Contextual Bandits
Motivated by the phenomenon of strategic agents gaming a recommender system to maximize the number of times they are recommended to users, we study a strategic variant of the linear contextual bandit problem, where the arms can strategically misreport privately observed contexts to the learner. We treat the algorithm design problem as one of mechanism design under uncertainty and propose the Optimistic Grim Trigger Mechanism (OptGTM) that incentivizes the agents (i.e., arms) to report their contexts truthfully while simultaneously minimizing regret. We also show that failing to account for the strategic nature of the agents results in linear regret. However, a trade-off between mechanism design and regret minimization appears to be unavoidable. More broadly, this work aims to provide insight into the intersection of online learning and mechanism design.
FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning
Recent advances in reinforcement learning (RL) heavily rely on a variety of well-designed benchmarks, which provide environmental platforms and consistent criteria to evaluate existing and novel algorithms. Specifically, in multi-agent RL (MARL), a plethora of benchmarks based on cooperative games have spurred the development of algorithms that improve the scalability of cooperative multi-agent systems. However, for the competitive setting, a lightweight and open-sourced benchmark with challenging gaming dynamics and visual inputs has not yet been established. In this work, we present FightLadder, a real-time fighting game platform, to empower competitive MARL research. Along with the platform, we provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics to characterize the performance and exploitability of agents. We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode, and expose the difficulty of training a non-exploitable agent without human knowledge and demonstrations in two-player mode. FightLadder provides meticulously designed environments to address critical challenges in competitive MARL research, aiming to catalyze a new era of discovery and advancement in the field. Videos and code at https://sites.google.com/view/fightladder/home.
Learning to Act Greedily: Polymatroid Semi-Bandits
Many important optimization problems, such as the minimum spanning tree and minimum-cost flow, can be solved optimally by a greedy method. In this work, we study a learning variant of these problems, where the model of the problem is unknown and has to be learned by interacting repeatedly with the environment in the bandit setting. We formalize our learning problem quite generally, as learning how to maximize an unknown modular function on a known polymatroid. We propose a computationally efficient algorithm for solving our problem and bound its expected cumulative regret. Our gap-dependent upper bound is tight up to a constant and our gap-free upper bound is tight up to polylogarithmic factors. Finally, we evaluate our method on three problems and demonstrate that it is practical.
Near-Optimal Solutions of Constrained Learning Problems
With the widespread adoption of machine learning systems, the need to curtail their behavior has become increasingly apparent. This is evidenced by recent advancements towards developing models that satisfy robustness, safety, and fairness requirements. These requirements can be imposed (with generalization guarantees) by formulating constrained learning problems that can then be tackled by dual ascent algorithms. Yet, though these algorithms converge in objective value, even in non-convex settings, they cannot guarantee that their outcome is feasible. Doing so requires randomizing over all iterates, which is impractical in virtually any modern applications. Still, final iterates have been observed to perform well in practice. In this work, we address this gap between theory and practice by characterizing the constraint violation of Lagrangian minimizers associated with optimal dual variables, despite lack of convexity. To do this, we leverage the fact that non-convex, finite-dimensional constrained learning problems can be seen as parametrizations of convex, functional problems. Our results show that rich parametrizations effectively mitigate the issue of feasibility in dual methods, shedding light on prior empirical successes of dual learning. We illustrate our findings in fair learning tasks.
Asynchronous ε-Greedy Bayesian Optimisation
Batch Bayesian optimisation (BO) is a successful technique for the optimisation of expensive black-box functions. Asynchronous BO can reduce wallclock time by starting a new evaluation as soon as another finishes, thus maximising resource utilisation. To maximise resource allocation, we develop a novel asynchronous BO method, AEGiS (Asynchronous epsilon-Greedy Global Search) that combines greedy search, exploiting the surrogate's mean prediction, with Thompson sampling and random selection from the approximate Pareto set describing the trade-off between exploitation (surrogate mean prediction) and exploration (surrogate posterior variance). We demonstrate empirically the efficacy of AEGiS on synthetic benchmark problems, meta-surrogate hyperparameter tuning problems and real-world problems, showing that AEGiS generally outperforms existing methods for asynchronous BO. When a single worker is available performance is no worse than BO using expected improvement.
A Theoretical Framework for Auxiliary-Loss-Free Load Balancing of Sparse Mixture-of-Experts in Large-Scale AI Models
In large-scale AI training, Sparse Mixture-of-Experts (s-MoE) layers enable scaling by activating only a small subset of experts per token. An operational challenge in this design is load balancing: routing tokens to minimize the number of idle experts, which is important for the efficient utilization of (costly) GPUs. We provide a theoretical framework for analyzing the Auxiliary-Loss-Free Load Balancing (ALF-LB) procedure -- proposed by DeepSeek's Wang et al. (2024) -- by casting it as a one-step-per-iteration primal-dual method for an assignment problem. First, in a stylized deterministic setting, our framework yields several insightful structural properties: (i) a monotonic improvement of a Lagrangian objective, (ii) a preference rule that moves tokens from overloaded to underloaded experts, and (iii) an approximate-balancing guarantee. Then, we incorporate the stochastic and dynamic nature of AI training using a generalized online optimization formulation. In the online setting, we derive a strong convexity property of the objective that leads to a logarithmic expected regret bound under certain step-size choices. Additionally, we present real experiments on 1B-parameter DeepSeekMoE models to complement our theoretical findings. Together, these results build a principled framework for analyzing the Auxiliary-Loss-Free Load Balancing of s-MoE in AI models.
Doubly Optimal No-Regret Learning in Monotone Games
We consider online learning in multi-player smooth monotone games. Existing algorithms have limitations such as (1) being only applicable to strongly monotone games; (2) lacking the no-regret guarantee; (3) having only asymptotic or slow O(1{T}) last-iterate convergence rate to a Nash equilibrium. While the O(1{T}) rate is tight for a large class of algorithms including the well-studied extragradient algorithm and optimistic gradient algorithm, it is not optimal for all gradient-based algorithms. We propose the accelerated optimistic gradient (AOG) algorithm, the first doubly optimal no-regret learning algorithm for smooth monotone games. Namely, our algorithm achieves both (i) the optimal O(T) regret in the adversarial setting under smooth and convex loss functions and (ii) the optimal O(1{T}) last-iterate convergence rate to a Nash equilibrium in multi-player smooth monotone games. As a byproduct of the accelerated last-iterate convergence rate, we further show that each player suffers only an O(log T) individual worst-case dynamic regret, providing an exponential improvement over the previous state-of-the-art O(T) bound.
Seed-CTS: Unleashing the Power of Tree Search for Superior Performance in Competitive Coding Tasks
Competition-level code generation tasks pose significant challenges for current state-of-the-art large language models (LLMs). For example, on the LiveCodeBench-Hard dataset, models such as O1-Mini and O1-Preview achieve pass@1 rates of only 0.366 and 0.143, respectively. While tree search techniques have proven effective in domains like mathematics and general coding, their potential in competition-level code generation remains under-explored. In this work, we propose a novel token-level tree search method specifically designed for code generation. Leveraging Qwen2.5-Coder-32B-Instruct, our approach achieves a pass rate of 0.305 on LiveCodeBench-Hard, surpassing the pass@100 performance of GPT4o-0513 (0.245). Furthermore, by integrating Chain-of-Thought (CoT) prompting, we improve our method's performance to 0.351, approaching O1-Mini's pass@1 rate. To ensure reproducibility, we report the average number of generations required per problem by our tree search method on the test set. Our findings underscore the potential of tree search to significantly enhance performance on competition-level code generation tasks. This opens up new possibilities for large-scale synthesis of challenging code problems supervised fine-tuning (SFT) data, advancing competition-level code generation tasks.
AlphaSnake: Policy Iteration on a Nondeterministic NP-hard Markov Decision Process
Reinforcement learning has recently been used to approach well-known NP-hard combinatorial problems in graph theory. Among these problems, Hamiltonian cycle problems are exceptionally difficult to analyze, even when restricted to individual instances of structurally complex graphs. In this paper, we use Monte Carlo Tree Search (MCTS), the search algorithm behind many state-of-the-art reinforcement learning algorithms such as AlphaZero, to create autonomous agents that learn to play the game of Snake, a game centered on properties of Hamiltonian cycles on grid graphs. The game of Snake can be formulated as a single-player discounted Markov Decision Process (MDP) where the agent must behave optimally in a stochastic environment. Determining the optimal policy for Snake, defined as the policy that maximizes the probability of winning - or win rate - with higher priority and minimizes the expected number of time steps to win with lower priority, is conjectured to be NP-hard. Performance-wise, compared to prior work in the Snake game, our algorithm is the first to achieve a win rate over 0.5 (a uniform random policy achieves a win rate < 2.57 times 10^{-15}), demonstrating the versatility of AlphaZero in approaching NP-hard environments.
Equitable Mechanism Design for Facility Location
We consider strategy proof mechanisms for facility location which maximize equitability between agents. As is common in the literature, we measure equitability with the Gini index. We first prove a simple but fundamental impossibility result that no strategy proof mechanism can bound the approximation ratio of the optimal Gini index of utilities for one or more facilities. We propose instead computing approximation ratios of the complemented Gini index of utilities, and consider how well both deterministic and randomized mechanisms approximate this. In addition, as Nash welfare is often put forwards as an equitable compromise between egalitarian and utilitarian outcomes, we consider how well mechanisms approximate the Nash welfare.
Towards Optimal Regret in Adversarial Linear MDPs with Bandit Feedback
We study online reinforcement learning in linear Markov decision processes with adversarial losses and bandit feedback, without prior knowledge on transitions or access to simulators. We introduce two algorithms that achieve improved regret performance compared to existing approaches. The first algorithm, although computationally inefficient, ensures a regret of mathcal{O}left(Kright), where K is the number of episodes. This is the first result with the optimal K dependence in the considered setting. The second algorithm, which is based on the policy optimization framework, guarantees a regret of mathcal{O}left(K^{3{4}} right) and is computationally efficient. Both our results significantly improve over the state-of-the-art: a computationally inefficient algorithm by Kong et al. [2023] with mathcal{O}left(K^{4{5}}+polyleft(1{lambda_{min}}right) right) regret, for some problem-dependent constant lambda_{min} that can be arbitrarily close to zero, and a computationally efficient algorithm by Sherman et al. [2023b] with mathcal{O}left(K^{6{7}} right) regret.
Improved Policy Evaluation for Randomized Trials of Algorithmic Resource Allocation
We consider the task of evaluating policies of algorithmic resource allocation through randomized controlled trials (RCTs). Such policies are tasked with optimizing the utilization of limited intervention resources, with the goal of maximizing the benefits derived. Evaluation of such allocation policies through RCTs proves difficult, notwithstanding the scale of the trial, because the individuals' outcomes are inextricably interlinked through resource constraints controlling the policy decisions. Our key contribution is to present a new estimator leveraging our proposed novel concept, that involves retrospective reshuffling of participants across experimental arms at the end of an RCT. We identify conditions under which such reassignments are permissible and can be leveraged to construct counterfactual trials, whose outcomes can be accurately ascertained, for free. We prove theoretically that such an estimator is more accurate than common estimators based on sample means -- we show that it returns an unbiased estimate and simultaneously reduces variance. We demonstrate the value of our approach through empirical experiments on synthetic, semi-synthetic as well as real case study data and show improved estimation accuracy across the board.
Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits
Dueling bandits is a prominent framework for decision-making involving preferential feedback, a valuable feature that fits various applications involving human interaction, such as ranking, information retrieval, and recommendation systems. While substantial efforts have been made to minimize the cumulative regret in dueling bandits, a notable gap in the current research is the absence of regret bounds that account for the inherent uncertainty in pairwise comparisons between the dueling arms. Intuitively, greater uncertainty suggests a higher level of difficulty in the problem. To bridge this gap, this paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM). We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound tilde Obig(dsum_{t=1^Tsigma_t^2} + dbig), where sigma_t is the variance of the pairwise comparison in round t, d is the dimension of the context vectors, and T is the time horizon. Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an tilde O(d) regret. We perform empirical experiments on synthetic data to confirm the advantage of our method over previous variance-agnostic algorithms.
Solving the Rubik's Cube Without Human Knowledge
A generally intelligent agent must be able to teach itself how to solve problems in complex domains with minimal human supervision. Recently, deep reinforcement learning algorithms combined with self-play have achieved superhuman proficiency in Go, Chess, and Shogi without human data or domain knowledge. In these environments, a reward is always received at the end of the game, however, for many combinatorial optimization environments, rewards are sparse and episodes are not guaranteed to terminate. We introduce Autodidactic Iteration: a novel reinforcement learning algorithm that is able to teach itself how to solve the Rubik's Cube with no human assistance. Our algorithm is able to solve 100% of randomly scrambled cubes while achieving a median solve length of 30 moves -- less than or equal to solvers that employ human domain knowledge.
Towards Optimal and Efficient Best Arm Identification in Linear Bandits
We give a new algorithm for best arm identification in linearly parameterised bandits in the fixed confidence setting. The algorithm generalises the well-known LUCB algorithm of Kalyanakrishnan et al. (2012) by playing an arm which minimises a suitable notion of geometric overlap of the statistical confidence set for the unknown parameter, and is fully adaptive and computationally efficient as compared to several state-of-the methods. We theoretically analyse the sample complexity of the algorithm for problems with two and three arms, showing optimality in many cases. Numerical results indicate favourable performance over other algorithms with which we compare.
Improved Sleeping Bandits with Stochastic Actions Sets and Adversarial Rewards
In this paper, we consider the problem of sleeping bandits with stochastic action sets and adversarial rewards. In this setting, in contrast to most work in bandits, the actions may not be available at all times. For instance, some products might be out of stock in item recommendation. The best existing efficient (i.e., polynomial-time) algorithms for this problem only guarantee an O(T^{2/3}) upper-bound on the regret. Yet, inefficient algorithms based on EXP4 can achieve O(T). In this paper, we provide a new computationally efficient algorithm inspired by EXP3 satisfying a regret of order O(T) when the availabilities of each action i in cA are independent. We then study the most general version of the problem where at each round available sets are generated from some unknown arbitrary distribution (i.e., without the independence assumption) and propose an efficient algorithm with O(2^K T) regret guarantee. Our theoretical results are corroborated with experimental evaluations.
DRIVE: Data Curation Best Practices for Reinforcement Learning with Verifiable Reward in Competitive Code Generation
Recent reasoning-first models (e.g., OpenAI o1, DeepSeek R1) have spurred a resurgence of interest in RLVR. Nevertheless, advances are dominated by mathematics (e.g., AIME), with competitive-programming code generation underexplored and data curation receiving less attention than RL algorithm design. We investigate how to construct RLVR datasets (i.e., RL prompts) and present practical training techniques that yield strong performance on competitive-programming code generation. Our pipeline begins with supervised fine-tuning (SFT) distilled from strong open-source models, augmented with general-purpose and reasoning-intensive data. RL then follows a two-stage process with executable, testcase-driven rewards: first, training on a large, uniformly distributed set of competitive-programming problems using Group Relative Policy Optimization (GRPO) with 8 rollouts per prompt and a relatively short response-generation window (e.g., 32k during SFT and 24k in this stage) to expand entropy and mitigate repetition and truncation; second, we perform Pre-GRPO: updating on a small, high-quality set of challenging problems with a large rollout budget (64 rollouts per prompt) under a hard-focus curriculum that continuously retains the most difficult instances throughout training. We implement our method on Qwen2.5-32B and evaluate on LeetCode and Codeforces weekly contests to avoid data leakage. The resulting model achieves state-of-the-art performance among models of similar scale and is comparable to leading systems such as DeepSeek v3.1 and Doubao-1.5-Thinking. We also examine scaling trends and observe strong RL scaling on an internal large-scale MoE model. Our study distills concise best practices for data curation, entropy expansion, and curriculum design in RLVR for competitive-programming code generation.
Towards Understanding the Behaviors of Optimal Deep Active Learning Algorithms
Active learning (AL) algorithms may achieve better performance with fewer data because the model guides the data selection process. While many algorithms have been proposed, there is little study on what the optimal AL algorithm looks like, which would help researchers understand where their models fall short and iterate on the design. In this paper, we present a simulated annealing algorithm to search for this optimal oracle and analyze it for several tasks. We present qualitative and quantitative insights into the behaviors of this oracle, comparing and contrasting them with those of various heuristics. Moreover, we are able to consistently improve the heuristics using one particular insight. We hope that our findings can better inform future active learning research. The code is available at https://github.com/YilunZhou/optimal-active-learning.
Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances
Solving a linear system Ax=b is a fundamental scientific computing primitive for which numerous solvers and preconditioners have been developed. These come with parameters whose optimal values depend on the system being solved and are often impossible or too expensive to identify; thus in practice sub-optimal heuristics are used. We consider the common setting in which many related linear systems need to be solved, e.g. during a single numerical simulation. In this scenario, can we sequentially choose parameters that attain a near-optimal overall number of iterations, without extra matrix computations? We answer in the affirmative for Successive Over-Relaxation (SOR), a standard solver whose parameter omega has a strong impact on its runtime. For this method, we prove that a bandit online learning algorithm--using only the number of iterations as feedback--can select parameters for a sequence of instances such that the overall cost approaches that of the best fixed omega as the sequence length increases. Furthermore, when given additional structural information, we show that a contextual bandit method asymptotically achieves the performance of the instance-optimal policy, which selects the best omega for each instance. Our work provides the first learning-theoretic treatment of high-precision linear system solvers and the first end-to-end guarantees for data-driven scientific computing, demonstrating theoretically the potential to speed up numerical methods using well-understood learning algorithms.
Approximating Nash Equilibria in Normal-Form Games via Stochastic Optimization
We propose the first loss function for approximate Nash equilibria of normal-form games that is amenable to unbiased Monte Carlo estimation. This construction allows us to deploy standard non-convex stochastic optimization techniques for approximating Nash equilibria, resulting in novel algorithms with provable guarantees. We complement our theoretical analysis with experiments demonstrating that stochastic gradient descent can outperform previous state-of-the-art approaches.
Towards Practical Preferential Bayesian Optimization with Skew Gaussian Processes
We study preferential Bayesian optimization (BO) where reliable feedback is limited to pairwise comparison called duels. An important challenge in preferential BO, which uses the preferential Gaussian process (GP) model to represent flexible preference structure, is that the posterior distribution is a computationally intractable skew GP. The most widely used approach for preferential BO is Gaussian approximation, which ignores the skewness of the true posterior. Alternatively, Markov chain Monte Carlo (MCMC) based preferential BO is also proposed. In this work, we first verify the accuracy of Gaussian approximation, from which we reveal the critical problem that the predictive probability of duels can be inaccurate. This observation motivates us to improve the MCMC-based estimation for skew GP, for which we show the practical efficiency of Gibbs sampling and derive the low variance MC estimator. However, the computational time of MCMC can still be a bottleneck in practice. Towards building a more practical preferential BO, we develop a new method that achieves both high computational efficiency and low sample complexity, and then demonstrate its effectiveness through extensive numerical experiments.
Simplex Neural Population Learning: Any-Mixture Bayes-Optimality in Symmetric Zero-sum Games
Learning to play optimally against any mixture over a diverse set of strategies is of important practical interests in competitive games. In this paper, we propose simplex-NeuPL that satisfies two desiderata simultaneously: i) learning a population of strategically diverse basis policies, represented by a single conditional network; ii) using the same network, learn best-responses to any mixture over the simplex of basis policies. We show that the resulting conditional policies incorporate prior information about their opponents effectively, enabling near optimal returns against arbitrary mixture policies in a game with tractable best-responses. We verify that such policies behave Bayes-optimally under uncertainty and offer insights in using this flexibility at test time. Finally, we offer evidence that learning best-responses to any mixture policies is an effective auxiliary task for strategic exploration, which, by itself, can lead to more performant populations.
Monopoly Deal: A Benchmark Environment for Bounded One-Sided Response Games
Card games are widely used to study sequential decision-making under uncertainty, with real-world analogues in negotiation, finance, and cybersecurity. These games typically fall into three categories based on the flow of control: strictly sequential (players alternate single actions), deterministic response (some actions trigger a fixed outcome), and unbounded reciprocal response (alternating counterplays are permitted). A less-explored but strategically rich structure is the bounded one-sided response, where a player's action briefly transfers control to the opponent, who must satisfy a fixed condition through one or more moves before the turn resolves. We term games featuring this mechanism Bounded One-Sided Response Games (BORGs). We introduce a modified version of Monopoly Deal as a benchmark environment that isolates this dynamic, where a Rent action forces the opponent to choose payment assets. The gold-standard algorithm, Counterfactual Regret Minimization (CFR), converges on effective strategies without novel algorithmic extensions. A lightweight full-stack research platform unifies the environment, a parallelized CFR runtime, and a human-playable web interface. The trained CFR agent and source code are available at https://monopolydeal.ai.
Bidding in Spades
We present a Spades bidding algorithm that is superior to recreational human players and to publicly available bots. Like in Bridge, the game of Spades is composed of two independent phases, bidding and playing. This paper focuses on the bidding algorithm, since this phase holds a precise challenge: based on the input, choose the bid that maximizes the agent's winning probability. Our Bidding-in-Spades (BIS) algorithm heuristically determines the bidding strategy by comparing the expected utility of each possible bid. A major challenge is how to estimate these expected utilities. To this end, we propose a set of domain-specific heuristics, and then correct them via machine learning using data from real-world players. The \BIS algorithm we present can be attached to any playing algorithm. It beats rule-based bidding bots when all use the same playing component. When combined with a rule-based playing algorithm, it is superior to the average recreational human.
Online Information Acquisition: Hiring Multiple Agents
We investigate the mechanism design problem faced by a principal who hires multiple agents to gather and report costly information. Then, the principal exploits the information to make an informed decision. We model this problem as a game, where the principal announces a mechanism consisting in action recommendations and a payment function, a.k.a. scoring rule. Then, each agent chooses an effort level and receives partial information about an underlying state of nature based on the effort. Finally, the agents report the information (possibly non-truthfully), the principal takes a decision based on this information, and the agents are paid according to the scoring rule. While previous work focuses on single-agent problems, we consider multi-agents settings. This poses the challenge of coordinating the agents' efforts and aggregating correlated information. Indeed, we show that optimal mechanisms must correlate agents' efforts, which introduces externalities among the agents, and hence complex incentive compatibility constraints and equilibrium selection problems. First, we design a polynomial-time algorithm to find an optimal incentive compatible mechanism. Then, we study an online problem, where the principal repeatedly interacts with a group of unknown agents. We design a no-regret algorithm that provides mathcal{O}(T^{2/3}) regret with respect to an optimal mechanism, matching the state-of-the-art bound for single-agent settings.
Subset Selection Based On Multiple Rankings in the Presence of Bias: Effectiveness of Fairness Constraints for Multiwinner Voting Score Functions
We consider the problem of subset selection where one is given multiple rankings of items and the goal is to select the highest ``quality'' subset. Score functions from the multiwinner voting literature have been used to aggregate rankings into quality scores for subsets. We study this setting of subset selection problems when, in addition, rankings may contain systemic or unconscious biases toward a group of items. For a general model of input rankings and biases, we show that requiring the selected subset to satisfy group fairness constraints can improve the quality of the selection with respect to unbiased rankings. Importantly, we show that for fairness constraints to be effective, different multiwinner score functions may require a drastically different number of rankings: While for some functions, fairness constraints need an exponential number of rankings to recover a close-to-optimal solution, for others, this dependency is only polynomial. This result relies on a novel notion of ``smoothness'' of submodular functions in this setting that quantifies how well a function can ``correctly'' assess the quality of items in the presence of bias. The results in this paper can be used to guide the choice of multiwinner score functions for the subset selection setting considered here; we additionally provide a tool to empirically enable this.
Closed-Form Diffusion Models
Score-based generative models (SGMs) sample from a target distribution by iteratively transforming noise using the score function of the perturbed target. For any finite training set, this score function can be evaluated in closed form, but the resulting SGM memorizes its training data and does not generate novel samples. In practice, one approximates the score by training a neural network via score-matching. The error in this approximation promotes generalization, but neural SGMs are costly to train and sample, and the effective regularization this error provides is not well-understood theoretically. In this work, we instead explicitly smooth the closed-form score to obtain an SGM that generates novel samples without training. We analyze our model and propose an efficient nearest-neighbor-based estimator of its score function. Using this estimator, our method achieves competitive sampling times while running on consumer-grade CPUs.
Exploiting Structure of Uncertainty for Efficient Matroid Semi-Bandits
We improve the efficiency of algorithms for stochastic combinatorial semi-bandits. In most interesting problems, state-of-the-art algorithms take advantage of structural properties of rewards, such as independence. However, while being optimal in terms of asymptotic regret, these algorithms are inefficient. In our paper, we first reduce their implementation to a specific submodular maximization. Then, in case of matroid constraints, we design adapted approximation routines, thereby providing the first efficient algorithms that rely on reward structure to improve regret bound. In particular, we improve the state-of-the-art efficient gap-free regret bound by a factor m/log m, where m is the maximum action size. Finally, we show how our improvement translates to more general budgeted combinatorial semi-bandits.
Online Mechanism Design for Information Acquisition
We study the problem of designing mechanisms for information acquisition scenarios. This setting models strategic interactions between an uniformed receiver and a set of informed senders. In our model the senders receive information about the underlying state of nature and communicate their observation (either truthfully or not) to the receiver, which, based on this information, selects an action. Our goal is to design mechanisms maximizing the receiver's utility while incentivizing the senders to report truthfully their information. First, we provide an algorithm that efficiently computes an optimal incentive compatible (IC) mechanism. Then, we focus on the online problem in which the receiver sequentially interacts in an unknown game, with the objective of minimizing the cumulative regret w.r.t. the optimal IC mechanism, and the cumulative violation of the incentive compatibility constraints. We investigate two different online scenarios, i.e., the full and bandit feedback settings. For the full feedback problem, we propose an algorithm that guarantees mathcal O(sqrt T) regret and violation, while for the bandit feedback setting we present an algorithm that attains mathcal O(T^{alpha}) regret and mathcal O(T^{1-alpha/2}) violation for any alphain[1/2, 1]. Finally, we complement our results providing a tight lower bound.
Is Computational Complexity a Barrier to Manipulation?
When agents are acting together, they may need a simple mechanism to decide on joint actions. One possibility is to have the agents express their preferences in the form of a ballot and use a voting rule to decide the winning action(s). Unfortunately, agents may try to manipulate such an election by misreporting their preferences. Fortunately, it has been shown that it is NP-hard to compute how to manipulate a number of different voting rules. However, NP-hardness only bounds the worst-case complexity. Recent theoretical results suggest that manipulation may often be easy in practice. To address this issue, I suggest studying empirically if computational complexity is in practice a barrier to manipulation. The basic tool used in my investigations is the identification of computational "phase transitions". Such an approach has been fruitful in identifying hard instances of propositional satisfiability and other NP-hard problems. I show that phase transition behaviour gives insight into the hardness of manipulating voting rules, increasing concern that computational complexity is indeed any sort of barrier. Finally, I look at the problem of computing manipulation of other, related problems like stable marriage and tournament problems.
Learning to Incentivize Information Acquisition: Proper Scoring Rules Meet Principal-Agent Model
We study the incentivized information acquisition problem, where a principal hires an agent to gather information on her behalf. Such a problem is modeled as a Stackelberg game between the principal and the agent, where the principal announces a scoring rule that specifies the payment, and then the agent then chooses an effort level that maximizes her own profit and reports the information. We study the online setting of such a problem from the principal's perspective, i.e., designing the optimal scoring rule by repeatedly interacting with the strategic agent. We design a provably sample efficient algorithm that tailors the UCB algorithm (Auer et al., 2002) to our model, which achieves a sublinear T^{2/3}-regret after T iterations. Our algorithm features a delicate estimation procedure for the optimal profit of the principal, and a conservative correction scheme that ensures the desired agent's actions are incentivized. Furthermore, a key feature of our regret bound is that it is independent of the number of states of the environment.
ALE-Bench: A Benchmark for Long-Horizon Objective-Driven Algorithm Engineering
How well do AI systems perform in algorithm engineering for hard optimization problems in domains such as package-delivery routing, crew scheduling, factory production planning, and power-grid balancing? We introduce ALE-Bench, a new benchmark for evaluating AI systems on score-based algorithmic programming contests. Drawing on real tasks from the AtCoder Heuristic Contests, ALE-Bench presents optimization problems that are computationally hard and admit no known exact solution. Unlike short-duration, pass/fail coding benchmarks, ALE-Bench encourages iterative solution refinement over long time horizons. Our software framework supports interactive agent architectures that leverage test-run feedback and visualizations. Our evaluation of frontier LLMs revealed that while they demonstrate high performance on specific problems, a notable gap remains compared to humans in terms of consistency across problems and long-horizon problem-solving capabilities. This highlights the need for this benchmark to foster future AI advancements.
Plum: Prompt Learning using Metaheuristic
Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly "general", i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in black-box prompt learning and Chain-of-Thought prompt tuning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown, opening the door to a cornucopia of possibilities in prompt optimization. We release all the codes in https://github.com/research4pan/Plum.
LiveOIBench: Can Large Language Models Outperform Human Contestants in Informatics Olympiads?
Competitive programming problems increasingly serve as valuable benchmarks to evaluate the coding capabilities of large language models (LLMs) due to their complexity and ease of verification. Yet, current coding benchmarks face limitations such as lack of exceptionally challenging problems, insufficient test case coverage, reliance on online platform APIs that limit accessibility. To address these issues, we introduce LiveOIBench, a comprehensive benchmark featuring 403 expert-curated Olympiad-level competitive programming problems, each with an average of 60 expert-designed test cases. The problems are sourced directly from 72 official Informatics Olympiads in different regions conducted between 2023 and 2025. LiveOIBench distinguishes itself through four key features: (1) meticulously curated high-quality tasks with detailed subtask rubrics and extensive private test cases; (2) direct integration of elite contestant performance data to enable informative comparison against top-performing humans; (3) planned continuous, contamination-free updates from newly released Olympiad problems; and (4) a self-contained evaluation system facilitating offline and easy-to-reproduce assessments. Benchmarking 32 popular general-purpose and reasoning LLMs, we find that GPT-5 achieves a notable 81.76th percentile, a strong result that nonetheless falls short of top human contestant performance, who usually place above 90th. In contrast, among open-weight reasoning models, GPT-OSS-120B achieves only a 60th percentile, underscoring significant capability disparities from frontier closed models. Detailed analyses indicate that robust reasoning models prioritize precise problem analysis over excessive exploration, suggesting future models should emphasize structured analysis and minimize unnecessary exploration. All data, code, and leaderboard results will be made publicly available on our website.
Data pruning and neural scaling laws: fundamental limitations of score-based algorithms
Data pruning algorithms are commonly used to reduce the memory and computational cost of the optimization process. Recent empirical results reveal that random data pruning remains a strong baseline and outperforms most existing data pruning methods in the high compression regime, i.e., where a fraction of 30% or less of the data is kept. This regime has recently attracted a lot of interest as a result of the role of data pruning in improving the so-called neural scaling laws; in [Sorscher et al.], the authors showed the need for high-quality data pruning algorithms in order to beat the sample power law. In this work, we focus on score-based data pruning algorithms and show theoretically and empirically why such algorithms fail in the high compression regime. We demonstrate ``No Free Lunch" theorems for data pruning and present calibration protocols that enhance the performance of existing pruning algorithms in this high compression regime using randomization.
Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment
Monte Carlo Tree Search (MCTS) is a powerful algorithm for solving complex decision-making problems. This paper presents an optimized MCTS implementation applied to the FrozenLake environment, a classic reinforcement learning task characterized by stochastic transitions. The optimization leverages cumulative reward and visit count tables along with the Upper Confidence Bound for Trees (UCT) formula, resulting in efficient learning in a slippery grid world. We benchmark our implementation against other decision-making algorithms, including MCTS with Policy and Q-Learning, and perform a detailed comparison of their performance. The results demonstrate that our optimized approach effectively maximizes rewards and success rates while minimizing convergence time, outperforming baseline methods, especially in environments with inherent randomness.
Interpretable Meta-Learning of Physical Systems
Machine learning methods can be a valuable aid in the scientific process, but they need to face challenging settings where data come from inhomogeneous experimental conditions. Recent meta-learning methods have made significant progress in multi-task learning, but they rely on black-box neural networks, resulting in high computational costs and limited interpretability. Leveraging the structure of the learning problem, we argue that multi-environment generalization can be achieved using a simpler learning model, with an affine structure with respect to the learning task. Crucially, we prove that this architecture can identify the physical parameters of the system, enabling interpreable learning. We demonstrate the competitive generalization performance and the low computational cost of our method by comparing it to state-of-the-art algorithms on physical systems, ranging from toy models to complex, non-analytical systems. The interpretability of our method is illustrated with original applications to physical-parameter-induced adaptation and to adaptive control.
Nonparametric Iterative Machine Teaching
In this paper, we consider the problem of Iterative Machine Teaching (IMT), where the teacher provides examples to the learner iteratively such that the learner can achieve fast convergence to a target model. However, existing IMT algorithms are solely based on parameterized families of target models. They mainly focus on convergence in the parameter space, resulting in difficulty when the target models are defined to be functions without dependency on parameters. To address such a limitation, we study a more general task -- Nonparametric Iterative Machine Teaching (NIMT), which aims to teach nonparametric target models to learners in an iterative fashion. Unlike parametric IMT that merely operates in the parameter space, we cast NIMT as a functional optimization problem in the function space. To solve it, we propose both random and greedy functional teaching algorithms. We obtain the iterative teaching dimension (ITD) of the random teaching algorithm under proper assumptions, which serves as a uniform upper bound of ITD in NIMT. Further, the greedy teaching algorithm has a significantly lower ITD, which reaches a tighter upper bound of ITD in NIMT. Finally, we verify the correctness of our theoretical findings with extensive experiments in nonparametric scenarios.
Preference-based Online Learning with Dueling Bandits: A Survey
In machine learning, the notion of multi-armed bandits refers to a class of online learning problems, in which an agent is supposed to simultaneously explore and exploit a given set of choice alternatives in the course of a sequential decision process. In the standard setting, the agent learns from stochastic feedback in the form of real-valued rewards. In many applications, however, numerical reward signals are not readily available -- instead, only weaker information is provided, in particular relative preferences in the form of qualitative comparisons between pairs of alternatives. This observation has motivated the study of variants of the multi-armed bandit problem, in which more general representations are used both for the type of feedback to learn from and the target of prediction. The aim of this paper is to provide a survey of the state of the art in this field, referred to as preference-based multi-armed bandits or dueling bandits. To this end, we provide an overview of problems that have been considered in the literature as well as methods for tackling them. Our taxonomy is mainly based on the assumptions made by these methods about the data-generating process and, related to this, the properties of the preference-based feedback.
Optimal Stochastic Non-smooth Non-convex Optimization through Online-to-Non-convex Conversion
We present new algorithms for optimizing non-smooth, non-convex stochastic objectives based on a novel analysis technique. This improves the current best-known complexity for finding a (delta,epsilon)-stationary point from O(epsilon^{-4}delta^{-1}) stochastic gradient queries to O(epsilon^{-3}delta^{-1}), which we also show to be optimal. Our primary technique is a reduction from non-smooth non-convex optimization to online learning, after which our results follow from standard regret bounds in online learning. For deterministic and second-order smooth objectives, applying more advanced optimistic online learning techniques enables a new complexity of O(epsilon^{-1.5}delta^{-0.5}). Our techniques also recover all optimal or best-known results for finding epsilon stationary points of smooth or second-order smooth objectives in both stochastic and deterministic settings.
The Update-Equivalence Framework for Decision-Time Planning
The process of revising (or constructing) a policy at execution time -- known as decision-time planning -- has been key to achieving superhuman performance in perfect-information games like chess and Go. A recent line of work has extended decision-time planning to imperfect-information games, leading to superhuman performance in poker. However, these methods involve solving subgames whose sizes grow quickly in the amount of non-public information, making them unhelpful when the amount of non-public information is large. Motivated by this issue, we introduce an alternative framework for decision-time planning that is not based on solving subgames, but rather on update equivalence. In this update-equivalence framework, decision-time planning algorithms replicate the updates of last-iterate algorithms, which need not rely on public information. This facilitates scalability to games with large amounts of non-public information. Using this framework, we derive a provably sound search algorithm for fully cooperative games based on mirror descent and a search algorithm for adversarial games based on magnetic mirror descent. We validate the performance of these algorithms in cooperative and adversarial domains, notably in Hanabi, the standard benchmark for search in fully cooperative imperfect-information games. Here, our mirror descent approach exceeds or matches the performance of public information-based search while using two orders of magnitude less search time. This is the first instance of a non-public-information-based algorithm outperforming public-information-based approaches in a domain they have historically dominated.
Active Learning Meets Optimized Item Selection
Designing recommendation systems with limited or no available training data remains a challenge. To that end, a new combinatorial optimization problem is formulated to generate optimized item selection for experimentation with the goal to shorten the time for collecting randomized training data. We first present an overview of the optimized item selection problem and a multi-level optimization framework to solve it. The approach integrates techniques from discrete optimization, unsupervised clustering, and latent text embeddings. We then discuss how to incorporate optimized item selection with active learning as part of randomized exploration in an ongoing fashion.
K-Sort Arena: Efficient and Reliable Benchmarking for Generative Models via K-wise Human Preferences
The rapid advancement of visual generative models necessitates efficient and reliable evaluation methods. Arena platform, which gathers user votes on model comparisons, can rank models with human preferences. However, traditional Arena methods, while established, require an excessive number of comparisons for ranking to converge and are vulnerable to preference noise in voting, suggesting the need for better approaches tailored to contemporary evaluation challenges. In this paper, we introduce K-Sort Arena, an efficient and reliable platform based on a key insight: images and videos possess higher perceptual intuitiveness than texts, enabling rapid evaluation of multiple samples simultaneously. Consequently, K-Sort Arena employs K-wise comparisons, allowing K models to engage in free-for-all competitions, which yield much richer information than pairwise comparisons. To enhance the robustness of the system, we leverage probabilistic modeling and Bayesian updating techniques. We propose an exploration-exploitation-based matchmaking strategy to facilitate more informative comparisons. In our experiments, K-Sort Arena exhibits 16.3x faster convergence compared to the widely used ELO algorithm. To further validate the superiority and obtain a comprehensive leaderboard, we collect human feedback via crowdsourced evaluations of numerous cutting-edge text-to-image and text-to-video models. Thanks to its high efficiency, K-Sort Arena can continuously incorporate emerging models and update the leaderboard with minimal votes. Our project has undergone several months of internal testing and is now available at https://huggingface.co/spaces/ksort/K-Sort-Arena
A Benchmark for Generalizing Across Diverse Team Strategies in Competitive Pokémon
Developing AI agents that can robustly adapt to dramatically different strategic landscapes without retraining is a central challenge for multi-agent learning. Pok\'emon Video Game Championships (VGC) is a domain with an extraordinarily large space of possible team configurations of approximately 10^{139} - far larger than those of Dota or Starcraft. The highly discrete, combinatorial nature of team building in Pok\'emon VGC causes optimal strategies to shift dramatically depending on both the team being piloted and the opponent's team, making generalization uniquely challenging. To advance research on this problem, we introduce VGC-Bench: a benchmark that provides critical infrastructure, standardizes evaluation protocols, and supplies human-play datasets and a range of baselines - from large-language-model agents and behavior cloning to reinforcement learning and empirical game-theoretic methods such as self-play, fictitious play, and double oracle. In the restricted setting where an agent is trained and evaluated on a single-team configuration, our methods are able to win against a professional VGC competitor. We extensively evaluated all baseline methods over progressively larger team sets and find that even the best-performing algorithm in the single-team setting struggles at scaling up as team size grows. Thus, policy generalization across diverse team strategies remains an open challenge for the community. Our code is open sourced at https://github.com/cameronangliss/VGC-Bench.
Concurrent Shuffle Differential Privacy Under Continual Observation
We introduce the concurrent shuffle model of differential privacy. In this model we have multiple concurrent shufflers permuting messages from different, possibly overlapping, batches of users. Similarly to the standard (single) shuffle model, the privacy requirement is that the concatenation of all shuffled messages should be differentially private. We study the private continual summation problem (a.k.a. the counter problem) and show that the concurrent shuffle model allows for significantly improved error compared to a standard (single) shuffle model. Specifically, we give a summation algorithm with error O(n^{1/(2k+1)}) with k concurrent shufflers on a sequence of length n. Furthermore, we prove that this bound is tight for any k, even if the algorithm can choose the sizes of the batches adaptively. For k=log n shufflers, the resulting error is polylogarithmic, much better than Theta(n^{1/3}) which we show is the smallest possible with a single shuffler. We use our online summation algorithm to get algorithms with improved regret bounds for the contextual linear bandit problem. In particular we get optimal O(n) regret with k= Omega(log n) concurrent shufflers.
Learning Optimal Contracts: How to Exploit Small Action Spaces
We study principal-agent problems in which a principal commits to an outcome-dependent payment scheme -- called contract -- in order to induce an agent to take a costly, unobservable action leading to favorable outcomes. We consider a generalization of the classical (single-round) version of the problem in which the principal interacts with the agent by committing to contracts over multiple rounds. The principal has no information about the agent, and they have to learn an optimal contract by only observing the outcome realized at each round. We focus on settings in which the size of the agent's action space is small. We design an algorithm that learns an approximately-optimal contract with high probability in a number of rounds polynomial in the size of the outcome space, when the number of actions is constant. Our algorithm solves an open problem by Zhu et al.[2022]. Moreover, it can also be employed to provide a mathcal{O}(T^{4/5}) regret bound in the related online learning setting in which the principal aims at maximizing their cumulative utility, thus considerably improving previously-known regret bounds.
ParBalans: Parallel Multi-Armed Bandits-based Adaptive Large Neighborhood Search
Solving Mixed-Integer Programming (MIP) problems often requires substantial computational resources due to their combinatorial nature. Parallelization has emerged as a critical strategy to accelerate solution times and enhance scalability to tackle large, complex instances. This paper investigates the parallelization capabilities of Balans, a recently proposed multi-armed bandits-based adaptive large neighborhood search for MIPs. While Balans's modular architecture inherently supports parallel exploration of diverse parameter configurations, this potential has not been thoroughly examined. To address this gap, we introduce ParBalans, an extension that leverages both solver-level and algorithmic-level parallelism to improve performance on challenging MIP instances. Our experimental results demonstrate that ParBalans exhibits competitive performance compared to the state-of-the-art commercial solver Gurobi, particularly on hard optimization benchmarks.
Multi-Armed Bandits with Censored Consumption of Resources
We consider a resource-aware variant of the classical multi-armed bandit problem: In each round, the learner selects an arm and determines a resource limit. It then observes a corresponding (random) reward, provided the (random) amount of consumed resources remains below the limit. Otherwise, the observation is censored, i.e., no reward is obtained. For this problem setting, we introduce a measure of regret, which incorporates the actual amount of allocated resources of each learning round as well as the optimality of realizable rewards. Thus, to minimize regret, the learner needs to set a resource limit and choose an arm in such a way that the chance to realize a high reward within the predefined resource limit is high, while the resource limit itself should be kept as low as possible. We propose a UCB-inspired online learning algorithm, which we analyze theoretically in terms of its regret upper bound. In a simulation study, we show that our learning algorithm outperforms straightforward extensions of standard multi-armed bandit algorithms.
The Design and Organization of Educational Competitions with Anonymous and Real-Time Leaderboards in Academic and Industrial Settings
The goal of this paper is to share our experience in designing and organizing educational competitions with anonymous and (near) real-time leaderboards in both academic and industrial settings. While such competitions serve as a great educational tool and provide participants with hands-on experience, they require significant planning, technical setup, and administration from organizers. In this paper, we first outline several important areas including team registration, data access, submission systems, rules and conditions that organizers should consider when planning such events. We then present a high-level system design that can support (near) real-time evaluation of submissions to power anonymous leaderboards and provide immediate feedback for participants. Finally, we share our experience applying this abstract system in academic and industrial settings. We hope the set of guidelines and the high-level system design proposed here help others in their organization of similar educational events.
Representation Learning with Multi-Step Inverse Kinematics: An Efficient and Optimal Approach to Rich-Observation RL
We study the design of sample-efficient algorithms for reinforcement learning in the presence of rich, high-dimensional observations, formalized via the Block MDP problem. Existing algorithms suffer from either 1) computational intractability, 2) strong statistical assumptions that are not necessarily satisfied in practice, or 3) suboptimal sample complexity. We address these issues by providing the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level, with minimal statistical assumptions. Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics, a learning objective in which the aim is to predict the learner's own action from the current observation and observations in the (potentially distant) future. MusIK is simple and flexible, and can efficiently take advantage of general-purpose function approximation. Our analysis leverages several new techniques tailored to non-optimistic exploration algorithms, which we anticipate will find broader use.
Population-based Evaluation in Repeated Rock-Paper-Scissors as a Benchmark for Multiagent Reinforcement Learning
Progress in fields of machine learning and adversarial planning has benefited significantly from benchmark domains, from checkers and the classic UCI data sets to Go and Diplomacy. In sequential decision-making, agent evaluation has largely been restricted to few interactions against experts, with the aim to reach some desired level of performance (e.g. beating a human professional player). We propose a benchmark for multiagent learning based on repeated play of the simple game Rock, Paper, Scissors along with a population of forty-three tournament entries, some of which are intentionally sub-optimal. We describe metrics to measure the quality of agents based both on average returns and exploitability. We then show that several RL, online learning, and language model approaches can learn good counter-strategies and generalize well, but ultimately lose to the top-performing bots, creating an opportunity for research in multiagent learning.
Can Multi-turn Self-refined Single Agent LMs with Retrieval Solve Hard Coding Problems?
Among the hardest tasks for humans are those found in competitive programming where problems require sophisticated algorithmic thinking, puzzle solving, and the creation of effective code. As a domain to assess language models (LMs), it has not received enough attention, though. This study presents the ICPC benchmark, which consists of 254 international collegiate programming contest (ICPC) tasks. Each problem includes official analysis, reference code, and sample, high-quality unit, and hidden tests. We are able to develop and evaluate a variety of LM inference techniques for competitive programming with these resources. With zero-shot chain-of-thought prompting, we find that o1 only achieves a 19.1\% pass@1 solve rate. With our best inference technique, which combines multi-turn self-judge with reflection and retrieval over episodic information, raises this to 42.2\%. Furthermore, we conduct a new human-in-the-loop investigation to gain a deeper understanding of the remaining difficulties. Surprisingly, we discover that o1 can solve 17 out of 18 problems that were previously unsolvable by any model or technique with just a few specific instructions. A footstep toward LMs with grounded, imaginative, and algorithmic thinking is provided by our quantitative findings and qualitative research. We open-source our code and data at https://github.com/kraritt/zolve.
LiteSearch: Efficacious Tree Search for LLM
Recent research suggests that tree search algorithms (e.g. Monte Carlo Tree Search) can dramatically boost LLM performance on complex mathematical reasoning tasks. However, they often require more than 10 times the computational resources of greedy decoding due to wasteful search strategies, making them difficult to be deployed in practical applications. This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget (maximum number of children) calculation to tackle this issue. By considering the search progress towards the final answer (history) and the guidance from a value network (future) trained without any step-wise annotations, our algorithm iteratively selects the most promising tree node before expanding it within the boundaries of the allocated computational budget. Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach not only offers competitive performance but also enjoys significantly lower computational costs compared to baseline methods.
PoisonArena: Uncovering Competing Poisoning Attacks in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems, widely used to improve the factual grounding of large language models (LLMs), are increasingly vulnerable to poisoning attacks, where adversaries inject manipulated content into the retriever's corpus. While prior research has predominantly focused on single-attacker settings, real-world scenarios often involve multiple, competing attackers with conflicting objectives. In this work, we introduce PoisonArena, the first benchmark to systematically study and evaluate competing poisoning attacks in RAG. We formalize the multi-attacker threat model, where attackers vie to control the answer to the same query using mutually exclusive misinformation. PoisonArena leverages the Bradley-Terry model to quantify each method's competitive effectiveness in such adversarial environments. Through extensive experiments on the Natural Questions and MS MARCO datasets, we demonstrate that many attack strategies successful in isolation fail under competitive pressure. Our findings highlight the limitations of conventional evaluation metrics like Attack Success Rate (ASR) and F1 score and underscore the need for competitive evaluation to assess real-world attack robustness. PoisonArena provides a standardized framework to benchmark and develop future attack and defense strategies under more realistic, multi-adversary conditions.
Learning to Bid in Repeated First-Price Auctions with Budgets
Budget management strategies in repeated auctions have received growing attention in online advertising markets. However, previous work on budget management in online bidding mainly focused on second-price auctions. The rapid shift from second-price auctions to first-price auctions for online ads in recent years has motivated the challenging question of how to bid in repeated first-price auctions while controlling budgets. In this work, we study the problem of learning in repeated first-price auctions with budgets. We design a dual-based algorithm that can achieve a near-optimal O(T) regret with full information feedback where the maximum competing bid is always revealed after each auction. We further consider the setting with one-sided information feedback where only the winning bid is revealed after each auction. We show that our modified algorithm can still achieve an O(T) regret with mild assumptions on the bidder's value distribution. Finally, we complement the theoretical results with numerical experiments to confirm the effectiveness of our budget management policy.
Etat de l'art sur l'application des bandits multi-bras
The Multi-armed bandit offer the advantage to learn and exploit the already learnt knowledge at the same time. This capability allows this approach to be applied in different domains, going from clinical trials where the goal is investigating the effects of different experimental treatments while minimizing patient losses, to adaptive routing where the goal is to minimize the delays in a network. This article provides a review of the recent results on applying bandit to real-life scenario and summarize the state of the art for each of these fields. Different techniques has been proposed to solve this problem setting, like epsilon-greedy, Upper confident bound (UCB) and Thompson Sampling (TS). We are showing here how this algorithms were adapted to solve the different problems of exploration exploitation.
BFS-Prover: Scalable Best-First Tree Search for LLM-based Automatic Theorem Proving
Recent advancements in large language models (LLMs) have spurred growing interest in automatic theorem proving using Lean4, where effective tree search methods are crucial for navigating proof search spaces. While the existing approaches primarily rely on value functions and Monte Carlo Tree Search (MCTS), the potential of simpler methods like Best-First Search (BFS) remains underexplored. This paper investigates whether BFS can achieve competitive performance in large-scale theorem proving tasks. We present BFS-Prover, a scalable expert iteration framework, featuring three key innovations. First, we implement strategic data filtering at each expert iteration round, excluding problems solvable via beam search node expansion to focus on harder cases. Second, we improve the sample efficiency of BFS through Direct Preference Optimization (DPO) applied to state-tactic pairs automatically annotated with compiler error feedback, refining the LLM's policy to prioritize productive expansions. Third, we employ length normalization in BFS to encourage exploration of deeper proof paths. BFS-Prover achieves a score of 71.31 on the MiniF2F test set and therefore challenges the perceived necessity of complex tree search methods, demonstrating that BFS can achieve competitive performance when properly scaled.
Algorithmic Collective Action in Machine Learning
We initiate a principled study of algorithmic collective action on digital platforms that deploy machine learning algorithms. We propose a simple theoretical model of a collective interacting with a firm's learning algorithm. The collective pools the data of participating individuals and executes an algorithmic strategy by instructing participants how to modify their own data to achieve a collective goal. We investigate the consequences of this model in three fundamental learning-theoretic settings: the case of a nonparametric optimal learning algorithm, a parametric risk minimizer, and gradient-based optimization. In each setting, we come up with coordinated algorithmic strategies and characterize natural success criteria as a function of the collective's size. Complementing our theory, we conduct systematic experiments on a skill classification task involving tens of thousands of resumes from a gig platform for freelancers. Through more than two thousand model training runs of a BERT-like language model, we see a striking correspondence emerge between our empirical observations and the predictions made by our theory. Taken together, our theory and experiments broadly support the conclusion that algorithmic collectives of exceedingly small fractional size can exert significant control over a platform's learning algorithm.
PASTA: Pessimistic Assortment Optimization
We consider a class of assortment optimization problems in an offline data-driven setting. A firm does not know the underlying customer choice model but has access to an offline dataset consisting of the historically offered assortment set, customer choice, and revenue. The objective is to use the offline dataset to find an optimal assortment. Due to the combinatorial nature of assortment optimization, the problem of insufficient data coverage is likely to occur in the offline dataset. Therefore, designing a provably efficient offline learning algorithm becomes a significant challenge. To this end, we propose an algorithm referred to as Pessimistic ASsortment opTimizAtion (PASTA for short) designed based on the principle of pessimism, that can correctly identify the optimal assortment by only requiring the offline data to cover the optimal assortment under general settings. In particular, we establish a regret bound for the offline assortment optimization problem under the celebrated multinomial logit model. We also propose an efficient computational procedure to solve our pessimistic assortment optimization problem. Numerical studies demonstrate the superiority of the proposed method over the existing baseline method.
Learning Thresholds with Latent Values and Censored Feedback
In this paper, we investigate a problem of actively learning threshold in latent space, where the unknown reward g(gamma, v) depends on the proposed threshold gamma and latent value v and it can be only achieved if the threshold is lower than or equal to the unknown latent value. This problem has broad applications in practical scenarios, e.g., reserve price optimization in online auctions, online task assignments in crowdsourcing, setting recruiting bars in hiring, etc. We first characterize the query complexity of learning a threshold with the expected reward at most epsilon smaller than the optimum and prove that the number of queries needed can be infinitely large even when g(gamma, v) is monotone with respect to both gamma and v. On the positive side, we provide a tight query complexity Theta(1/epsilon^3) when g is monotone and the CDF of value distribution is Lipschitz. Moreover, we show a tight Theta(1/epsilon^3) query complexity can be achieved as long as g satisfies one-sided Lipschitzness, which provides a complete characterization for this problem. Finally, we extend this model to an online learning setting and demonstrate a tight Theta(T^{2/3}) regret bound using continuous-arm bandit techniques and the aforementioned query complexity results.
Position Auctions in AI-Generated Content
We consider an extension to the classic position auctions in which sponsored creatives can be added within AI generated content rather than shown in predefined slots. New challenges arise from the natural requirement that sponsored creatives should smoothly fit into the context. With the help of advanced LLM technologies, it becomes viable to accurately estimate the benefits of adding each individual sponsored creatives into each potential positions within the AI generated content by properly taking the context into account. Therefore, we assume one click-through rate estimation for each position-creative pair, rather than one uniform estimation for each sponsored creative across all positions in classic settings. As a result, the underlying optimization becomes a general matching problem, thus the substitution effects should be treated more carefully compared to standard position auction settings, where the slots are independent with each other. In this work, we formalize a concrete mathematical model of the extended position auction problem and study the welfare-maximization and revenue-maximization mechanism design problem. Formally, we consider two different user behavior models and solve the mechanism design problems therein respectively. For the Multinomial Logit (MNL) model, which is order-insensitive, we can efficiently implement the optimal mechanisms. For the cascade model, which is order-sensitive, we provide approximately optimal solutions.
Optimistic optimization of a Brownian
We address the problem of optimizing a Brownian motion. We consider a (random) realization W of a Brownian motion with input space in [0,1]. Given W, our goal is to return an ε-approximation of its maximum using the smallest possible number of function evaluations, the sample complexity of the algorithm. We provide an algorithm with sample complexity of order log^2(1/ε). This improves over previous results of Al-Mharmah and Calvin (1996) and Calvin et al. (2017) which provided only polynomial rates. Our algorithm is adaptive---each query depends on previous values---and is an instance of the optimism-in-the-face-of-uncertainty principle.
Introduction to Multi-Armed Bandits
Multi-armed bandits a simple but very powerful framework for algorithms that make decisions over time under uncertainty. An enormous body of work has accumulated over the years, covered in several books and surveys. This book provides a more introductory, textbook-like treatment of the subject. Each chapter tackles a particular line of work, providing a self-contained, teachable technical introduction and a brief review of the further developments; many of the chapters conclude with exercises. The book is structured as follows. The first four chapters are on IID rewards, from the basic model to impossibility results to Bayesian priors to Lipschitz rewards. The next three chapters cover adversarial rewards, from the full-feedback version to adversarial bandits to extensions with linear rewards and combinatorially structured actions. Chapter 8 is on contextual bandits, a middle ground between IID and adversarial bandits in which the change in reward distributions is completely explained by observable contexts. The last three chapters cover connections to economics, from learning in repeated games to bandits with supply/budget constraints to exploration in the presence of incentives. The appendix provides sufficient background on concentration and KL-divergence. The chapters on "bandits with similarity information", "bandits with knapsacks" and "bandits and agents" can also be consumed as standalone surveys on the respective topics.
Quantum Speedups for Zero-Sum Games via Improved Dynamic Gibbs Sampling
We give a quantum algorithm for computing an epsilon-approximate Nash equilibrium of a zero-sum game in a m times n payoff matrix with bounded entries. Given a standard quantum oracle for accessing the payoff matrix our algorithm runs in time O(m + ncdot epsilon^{-2.5} + epsilon^{-3}) and outputs a classical representation of the epsilon-approximate Nash equilibrium. This improves upon the best prior quantum runtime of O(m + n cdot epsilon^{-3}) obtained by [vAG19] and the classic O((m + n) cdot epsilon^{-2}) runtime due to [GK95] whenever epsilon = Omega((m +n)^{-1}). We obtain this result by designing new quantum data structures for efficiently sampling from a slowly-changing Gibbs distribution.
AC-Band: A Combinatorial Bandit-Based Approach to Algorithm Configuration
We study the algorithm configuration (AC) problem, in which one seeks to find an optimal parameter configuration of a given target algorithm in an automated way. Recently, there has been significant progress in designing AC approaches that satisfy strong theoretical guarantees. However, a significant gap still remains between the practical performance of these approaches and state-of-the-art heuristic methods. To this end, we introduce AC-Band, a general approach for the AC problem based on multi-armed bandits that provides theoretical guarantees while exhibiting strong practical performance. We show that AC-Band requires significantly less computation time than other AC approaches providing theoretical guarantees while still yielding high-quality configurations.
Hardness of Independent Learning and Sparse Equilibrium Computation in Markov Games
We consider the problem of decentralized multi-agent reinforcement learning in Markov games. A fundamental question is whether there exist algorithms that, when adopted by all agents and run independently in a decentralized fashion, lead to no-regret for each player, analogous to celebrated convergence results in normal-form games. While recent work has shown that such algorithms exist for restricted settings (notably, when regret is defined with respect to deviations to Markovian policies), the question of whether independent no-regret learning can be achieved in the standard Markov game framework was open. We provide a decisive negative resolution this problem, both from a computational and statistical perspective. We show that: - Under the widely-believed assumption that PPAD-hard problems cannot be solved in polynomial time, there is no polynomial-time algorithm that attains no-regret in general-sum Markov games when executed independently by all players, even when the game is known to the algorithm designer and the number of players is a small constant. - When the game is unknown, no algorithm, regardless of computational efficiency, can achieve no-regret without observing a number of episodes that is exponential in the number of players. Perhaps surprisingly, our lower bounds hold even for seemingly easier setting in which all agents are controlled by a a centralized algorithm. They are proven via lower bounds for a simpler problem we refer to as SparseCCE, in which the goal is to compute a coarse correlated equilibrium that is sparse in the sense that it can be represented as a mixture of a small number of product policies. The crux of our approach is a novel application of aggregation techniques from online learning, whereby we show that any algorithm for the SparseCCE problem can be used to compute approximate Nash equilibria for non-zero sum normal-form games.
OpenSkill: A faster asymmetric multi-team, multiplayer rating system
Assessing and comparing player skill in online multiplayer gaming environments is essential for fair matchmaking and player engagement. Traditional ranking models like Elo and Glicko-2, designed for two-player games, are insufficient for the complexity of multi-player, asymmetric team-based matches. To address this gap, the OpenSkill library offers a suite of sophisticated, fast, and adaptable models tailored for such dynamics. Drawing from Bayesian inference methods, OpenSkill provides a more accurate representation of individual player contributions and speeds up the computation of ranks. This paper introduces the OpenSkill library, featuring a Python implementation of the Plackett-Luce model among others, highlighting its performance advantages and predictive accuracy against proprietary systems like TrueSkill. OpenSkill is a valuable tool for game developers and researchers, ensuring a responsive and fair gaming experience by efficiently adjusting player rankings based on game outcomes. The library's support for time decay and diligent documentation further aid in its practical application, making it a robust solution for the nuanced world of multiplayer ranking systems. This paper also acknowledges areas for future enhancement, such as partial play and contribution weighting, emphasizing the library's ongoing development to meet the evolving needs of online gaming communities.
Analytical confidence intervals for the number of different objects in data streams
This paper develops a new mathematical-statistical approach to analyze a class of Flajolet-Martin algorithms (FMa), and provides analytical confidence intervals for the number F0 of distinct elements in a stream, based on Chernoff bounds. The class of FMa has reached a significant popularity in bigdata stream learning, and the attention of the literature has mainly been based on algorithmic aspects, basically complexity optimality, while the statistical analysis of these class of algorithms has been often faced heuristically. The analysis provided here shows deep connections with mathematical special functions and with extreme value theory. The latter connection may help in explaining heuristic considerations, while the first opens many numerical issues, faced at the end of the present paper. Finally, the algorithms are tested on an anonymized real data stream and MonteCarlo simulations are provided to support our analytical choice in this context.
B4: Towards Optimal Assessment of Plausible Code Solutions with Plausible Tests
Selecting the best code solution from multiple generated ones is an essential task in code generation, which can be achieved by using some reliable validators (e.g., developer-written test cases) for assistance. Since reliable test cases are not always available and can be expensive to build in practice, researchers propose to automatically generate test cases to assess code solutions. However, when both code solutions and test cases are plausible and not reliable, selecting the best solution becomes challenging. Although some heuristic strategies have been proposed to tackle this problem, they lack a strong theoretical guarantee and it is still an open question whether an optimal selection strategy exists. Our work contributes in two ways. First, we show that within a Bayesian framework, the optimal selection strategy can be defined based on the posterior probability of the observed passing states between solutions and tests. The problem of identifying the best solution is then framed as an integer programming problem. Second, we propose an efficient approach for approximating this optimal (yet uncomputable) strategy, where the approximation error is bounded by the correctness of prior knowledge. We then incorporate effective prior knowledge to tailor code generation tasks. Both theoretical and empirical studies confirm that existing heuristics are limited in selecting the best solutions with plausible test cases. Our proposed approximated optimal strategy B4 significantly surpasses existing heuristics in selecting code solutions generated by large language models (LLMs) with LLM-generated tests, achieving a relative performance improvement by up to 50% over the strongest heuristic and 246% over the random selection in the most challenging scenarios. Our code is publicly available at https://github.com/ZJU-CTAG/B4.
Who Needs to Know? Minimal Knowledge for Optimal Coordination
To optimally coordinate with others in cooperative games, it is often crucial to have information about one's collaborators: successful driving requires understanding which side of the road to drive on. However, not every feature of collaborators is strategically relevant: the fine-grained acceleration of drivers may be ignored while maintaining optimal coordination. We show that there is a well-defined dichotomy between strategically relevant and irrelevant information. Moreover, we show that, in dynamic games, this dichotomy has a compact representation that can be efficiently computed via a Bellman backup operator. We apply this algorithm to analyze the strategically relevant information for tasks in both a standard and a partially observable version of the Overcooked environment. Theoretical and empirical results show that our algorithms are significantly more efficient than baselines. Videos are available at https://minknowledge.github.io.
Greed is Good: Exploration and Exploitation Trade-offs in Bayesian Optimisation
The performance of acquisition functions for Bayesian optimisation to locate the global optimum of continuous functions is investigated in terms of the Pareto front between exploration and exploitation. We show that Expected Improvement (EI) and the Upper Confidence Bound (UCB) always select solutions to be expensively evaluated on the Pareto front, but Probability of Improvement is not guaranteed to do so and Weighted Expected Improvement does so only for a restricted range of weights. We introduce two novel epsilon-greedy acquisition functions. Extensive empirical evaluation of these together with random search, purely exploratory, and purely exploitative search on 10 benchmark problems in 1 to 10 dimensions shows that epsilon-greedy algorithms are generally at least as effective as conventional acquisition functions (e.g., EI and UCB), particularly with a limited budget. In higher dimensions epsilon-greedy approaches are shown to have improved performance over conventional approaches. These results are borne out on a real world computational fluid dynamics optimisation problem and a robotics active learning problem. Our analysis and experiments suggest that the most effective strategy, particularly in higher dimensions, is to be mostly greedy, occasionally selecting a random exploratory solution.
Neural Active Learning Beyond Bandits
We study both stream-based and pool-based active learning with neural network approximations. A recent line of works proposed bandit-based approaches that transformed active learning into a bandit problem, achieving both theoretical and empirical success. However, the performance and computational costs of these methods may be susceptible to the number of classes, denoted as K, due to this transformation. Therefore, this paper seeks to answer the question: "How can we mitigate the adverse impacts of K while retaining the advantages of principled exploration and provable performance guarantees in active learning?" To tackle this challenge, we propose two algorithms based on the newly designed exploitation and exploration neural networks for stream-based and pool-based active learning. Subsequently, we provide theoretical performance guarantees for both algorithms in a non-parametric setting, demonstrating a slower error-growth rate concerning K for the proposed approaches. We use extensive experiments to evaluate the proposed algorithms, which consistently outperform state-of-the-art baselines.
Contextual Combinatorial Bandits with Probabilistically Triggered Arms
We study contextual combinatorial bandits with probabilistically triggered arms (C^2MAB-T) under a variety of smoothness conditions that capture a wide range of applications, such as contextual cascading bandits and contextual influence maximization bandits. Under the triggering probability modulated (TPM) condition, we devise the C^2-UCB-T algorithm and propose a novel analysis that achieves an O(dKT) regret bound, removing a potentially exponentially large factor O(1/p_{min}), where d is the dimension of contexts, p_{min} is the minimum positive probability that any arm can be triggered, and batch-size K is the maximum number of arms that can be triggered per round. Under the variance modulated (VM) or triggering probability and variance modulated (TPVM) conditions, we propose a new variance-adaptive algorithm VAC^2-UCB and derive a regret bound O(dT), which is independent of the batch-size K. As a valuable by-product, our analysis technique and variance-adaptive algorithm can be applied to the CMAB-T and C^2MAB setting, improving existing results there as well. We also include experiments that demonstrate the improved performance of our algorithms compared with benchmark algorithms on synthetic and real-world datasets.
Avoiding Catastrophe in Online Learning by Asking for Help
Most learning algorithms with formal regret guarantees assume that no mistake is irreparable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are catastrophic, i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe that round and aim to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We first show that in general, any algorithm either constantly queries the mentor or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online learning model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.
