Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFastPitch: Parallel Text-to-speech with Pitch Prediction
We present FastPitch, a fully-parallel text-to-speech model based on FastSpeech, conditioned on fundamental frequency contours. The model predicts pitch contours during inference. By altering these predictions, the generated speech can be more expressive, better match the semantic of the utterance, and in the end more engaging to the listener. Uniformly increasing or decreasing pitch with FastPitch generates speech that resembles the voluntary modulation of voice. Conditioning on frequency contours improves the overall quality of synthesized speech, making it comparable to state-of-the-art. It does not introduce an overhead, and FastPitch retains the favorable, fully-parallel Transformer architecture, with over 900x real-time factor for mel-spectrogram synthesis of a typical utterance.
CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences
Code completion is an essential feature of IDEs, yet current autocompleters are restricted to either grammar-based or NLP-based single token completions. Both approaches have significant drawbacks: grammar-based autocompletion is restricted in dynamically-typed language environments, whereas NLP-based autocompleters struggle to understand the semantics of the programming language and the developer's code context. In this work, we present CodeFill, a language model for autocompletion that combines learned structure and naming information. Using a parallel Transformer architecture and multi-task learning, CodeFill consumes sequences of source code token names and their equivalent AST token types. Uniquely, CodeFill is trained both for single-token and multi-token (statement) prediction, which enables it to learn long-range dependencies among grammatical and naming elements. We train CodeFill on two datasets, consisting of 29M and 425M lines of code, respectively. To make the evaluation more realistic, we develop a method to automatically infer points in the source code at which completion matters. We compare CodeFill against four baselines and two state-of-the-art models, GPT-C and TravTrans+.CodeFill surpasses all baselines in single token prediction (MRR: 70.9% vs. 66.2% and 67.8%) and outperforms the state of the art for multi-token prediction (ROUGE-L: 63.7% vs. 52.4% and 59.2%, for n=4 tokens). We publicly release our source code and datasets.
BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts
The Mixture of Experts (MoE) framework has become a popular architecture for large language models due to its superior performance over dense models. However, training MoEs from scratch in a large-scale regime is prohibitively expensive. Existing methods mitigate this by pre-training multiple dense expert models independently and using them to initialize an MoE. This is done by using experts' feed-forward network (FFN) to initialize the MoE's experts while merging other parameters. However, this method limits the reuse of dense model parameters to only the FFN layers, thereby constraining the advantages when "upcycling" these models into MoEs. We propose BAM (Branch-Attend-Mix), a simple yet effective method that addresses this shortcoming. BAM makes full use of specialized dense models by not only using their FFN to initialize the MoE layers but also leveraging experts' attention parameters fully by initializing them into a soft-variant of Mixture of Attention (MoA) layers. We explore two methods for upcycling attention parameters: 1) initializing separate attention experts from dense models including all attention parameters for the best model performance; and 2) sharing key and value parameters across all experts to facilitate for better inference efficiency. To further improve efficiency, we adopt a parallel attention transformer architecture to MoEs, which allows the attention experts and FFN experts to be computed concurrently. Our experiments on seed models ranging from 590 million to 2 billion parameters demonstrate that BAM surpasses baselines in both perplexity and downstream task performance, within the same computational and data constraints.
A general language model for peptide identification
Advances in peptide identification are revolutionizing our ability to decipher protein functions and accelerate therapeutic discovery. We present PDeepPP, a deep learning framework that integrates pretrained protein language models with parallel transformer-CNN architectures, achieving state-of-the-art performance in peptide characterization tasks. The model's hybrid architecture demonstrates unique capabilities in capturing both local sequence motifs and global structural features, as evidenced by 29% improved cluster separation in UMAP visualizations compared to conventional approaches. Evaluated across 33 biological recognition tasks - including post-translational modification site prediction and bioactive peptide identification - PDeepPP outperformed existing methods in 25 tasks with average AUC improvements of 4.2%. Notably, it achieved 0.9726 accuracy with PR AUC 0.9977 in antimicrobial peptide detection while reducing false negatives by 37.5% in antimalarial recognition scenarios. This framework enables accurate large-scale peptide analysis, achieving 218* acceleration over sequence-alignment-based methods while maintaining 99.5% specificity in critical glycosylation site detection.PDeepPP establishes a new paradigm for computational peptide analysis through its synergistic architecture design, enabling rapid yet precise functional annotation that bridges molecular pattern recognition with translational biomedical applications.We have made our implementation, including code, data, and pretrained models, publicly available via GitHub (https://github.com/fondress/PDeepPP) and Hugging Face (https://huggingface.co/fondress/PDeppPP).
Gated Associative Memory: A Parallel O(N) Architecture for Efficient Sequence Modeling
The Transformer architecture, underpinned by the self-attention mechanism, has become the de facto standard for sequence modeling tasks. However, its core computational primitive scales quadratically with sequence length (O(N^2)), creating a significant bottleneck for processing long contexts. In this paper, we propose the Gated Associative Memory (GAM) network, a novel, fully parallel architecture for sequence modeling that exhibits linear complexity (O(N)) with respect to sequence length. The GAM block replaces the self-attention layer with two parallel pathways: a causal convolution to efficiently capture local, position-dependent context, and a parallel associative memory retrieval mechanism to model global, content-based patterns. These pathways are dynamically fused using a gating mechanism, allowing the model to flexibly combine local and global information for each token. We implement GAM from scratch and conduct a rigorous comparative analysis against a standard Transformer model and a modern linear-time baseline (Mamba) on the WikiText-2 benchmark, as well as against the Transformer on the TinyStories dataset. Our experiments demonstrate that GAM is consistently faster, outperforming both baselines on training speed, and achieves a superior or competitive final validation perplexity across all datasets, establishing it as a promising and efficient alternative for sequence modeling.
A Neural ODE Interpretation of Transformer Layers
Transformer layers, which use an alternating pattern of multi-head attention and multi-layer perceptron (MLP) layers, provide an effective tool for a variety of machine learning problems. As the transformer layers use residual connections to avoid the problem of vanishing gradients, they can be viewed as the numerical integration of a differential equation. In this extended abstract, we build upon this connection and propose a modification of the internal architecture of a transformer layer. The proposed model places the multi-head attention sublayer and the MLP sublayer parallel to each other. Our experiments show that this simple modification improves the performance of transformer networks in multiple tasks. Moreover, for the image classification task, we show that using neural ODE solvers with a sophisticated integration scheme further improves performance.
Kraken: Inherently Parallel Transformers For Efficient Multi-Device Inference
Large Transformer networks are increasingly used in settings where low inference latency can improve the end-user experience and enable new applications. However, autoregressive inference is resource intensive and requires parallelism for efficiency. Parallelism introduces collective communication that is both expensive and represents a phase when hardware resources are underutilized. Towards mitigating this, Kraken is an evolution of the standard Transformer architecture that is designed to complement existing tensor parallelism schemes for efficient inference on multi-device systems. By introducing a fixed degree of intra-layer model parallelism, the architecture allows collective operations to be overlapped with compute, decreasing latency and increasing hardware utilization. When trained on OpenWebText, Kraken models reach a similar perplexity as standard Transformers while also preserving their language modeling capabilities when evaluated on the SuperGLUE benchmark. Importantly, when tested on multi-GPU systems using TensorRT-LLM engines, Kraken speeds up Time To First Token by a mean of 35.6% across a range of model sizes, context lengths, and degrees of tensor parallelism.
FocusLLM: Scaling LLM's Context by Parallel Decoding
Empowering LLMs with the ability to utilize useful information from a long context is crucial for many downstream applications. However, achieving long context lengths with the conventional transformer architecture requires substantial training and inference resources. In this paper, we present FocusLLM, a framework designed to extend the context length of any decoder-only LLM, enabling the model to focus on relevant information from very long sequences. FocusLLM processes long text inputs by dividing them into chunks based on the model's original context length to alleviate the issue of attention distraction. Then, it appends the local context to each chunk as a prompt to extract essential information from each chunk based on a novel parallel decoding mechanism, and ultimately integrates the extracted information into the local context. FocusLLM stands out for great training efficiency and versatility: trained with an 8K input length with much less training cost than previous methods, FocusLLM exhibits superior performance across downstream long-context tasks and maintains strong language modeling ability when handling extensive long texts, even up to 400K tokens. Our code is available at https://github.com/leezythu/FocusLLM.
Investigating the Role of Feed-Forward Networks in Transformers Using Parallel Attention and Feed-Forward Net Design
This paper investigates the key role of Feed-Forward Networks (FFNs) in transformer models by utilizing the Parallel Attention and Feed-Forward Net Design (PAF) architecture, and comparing it to their Series Attention and Feed-Forward Net Design (SAF) counterparts. Central to the effectiveness of PAF are two main assumptions regarding the FFN block and the attention block within a layer: 1) the primary function of the FFN block is to maintain isotropy among token embeddings and prevent their degeneration, and 2) the residual norm computed in the attention block is substantially smaller than the input token embedding norm. To empirically validate these assumptions, we train PAF variants of two large language models (RoBERTa-large and bert-large-uncased). Our results demonstrate that both assumptions hold true in the PAF design. This study contributes to a deeper understanding of the roles and interactions between FFNs and self-attention mechanisms in transformer architectures.
Connecting the Dots: Floorplan Reconstruction Using Two-Level Queries
We address 2D floorplan reconstruction from 3D scans. Existing approaches typically employ heuristically designed multi-stage pipelines. Instead, we formulate floorplan reconstruction as a single-stage structured prediction task: find a variable-size set of polygons, which in turn are variable-length sequences of ordered vertices. To solve it we develop a novel Transformer architecture that generates polygons of multiple rooms in parallel, in a holistic manner without hand-crafted intermediate stages. The model features two-level queries for polygons and corners, and includes polygon matching to make the network end-to-end trainable. Our method achieves a new state-of-the-art for two challenging datasets, Structured3D and SceneCAD, along with significantly faster inference than previous methods. Moreover, it can readily be extended to predict additional information, i.e., semantic room types and architectural elements like doors and windows. Our code and models are available at: https://github.com/ywyue/RoomFormer.
CORN: Contact-based Object Representation for Nonprehensile Manipulation of General Unseen Objects
Nonprehensile manipulation is essential for manipulating objects that are too thin, large, or otherwise ungraspable in the wild. To sidestep the difficulty of contact modeling in conventional modeling-based approaches, reinforcement learning (RL) has recently emerged as a promising alternative. However, previous RL approaches either lack the ability to generalize over diverse object shapes, or use simple action primitives that limit the diversity of robot motions. Furthermore, using RL over diverse object geometry is challenging due to the high cost of training a policy that takes in high-dimensional sensory inputs. We propose a novel contact-based object representation and pretraining pipeline to tackle this. To enable massively parallel training, we leverage a lightweight patch-based transformer architecture for our encoder that processes point clouds, thus scaling our training across thousands of environments. Compared to learning from scratch, or other shape representation baselines, our representation facilitates both time- and data-efficient learning. We validate the efficacy of our overall system by zero-shot transferring the trained policy to novel real-world objects. Code and videos are available at https://sites.google.com/view/contact-non-prehensile.
Parallel Loop Transformer for Efficient Test-Time Computation Scaling
Large Language Models (LLMs) are powerful but often too slow and costly for real-world use during inference. Looped transformers save on parameters by reusing the same weights for multiple computational steps, or "loops." However, this approach has a major flaw: the loops run one after another, causing inference latency and memory requirements to increase with each added loop. This makes them impractical for fast applications. To solve this problem, we introduce the Parallel Loop Transformer (PLT). PLT is a new architecture that delivers the performance benefits of a deep, looped model but with the low latency of a standard, non-looped model. PLT works using two key techniques. First, Cross-Loop Parallelism (CLP) breaks the sequential dependency by computing different loops for different tokens at the same time, all within a single pass. Second, to prevent memory costs from growing, we use an Efficient Representation Enhancement strategy. This method shares the memory (KV cache) from the first loop with all other loops. It then uses a Gated Sliding-Window Attention (G-SWA) to combine this shared global information with local information, maintaining high accuracy. Our experiments show that PLT achieves the high accuracy of a traditional looped model but with almost no extra latency or memory cost compared to a standard transformer.
ParaFormer: Parallel Attention Transformer for Efficient Feature Matching
Heavy computation is a bottleneck limiting deep-learningbased feature matching algorithms to be applied in many realtime applications. However, existing lightweight networks optimized for Euclidean data cannot address classical feature matching tasks, since sparse keypoint based descriptors are expected to be matched. This paper tackles this problem and proposes two concepts: 1) a novel parallel attention model entitled ParaFormer and 2) a graph based U-Net architecture with attentional pooling. First, ParaFormer fuses features and keypoint positions through the concept of amplitude and phase, and integrates self- and cross-attention in a parallel manner which achieves a win-win performance in terms of accuracy and efficiency. Second, with U-Net architecture and proposed attentional pooling, the ParaFormer-U variant significantly reduces computational complexity, and minimize performance loss caused by downsampling. Sufficient experiments on various applications, including homography estimation, pose estimation, and image matching, demonstrate that ParaFormer achieves state-of-the-art performance while maintaining high efficiency. The efficient ParaFormer-U variant achieves comparable performance with less than 50% FLOPs of the existing attention-based models.
Parallel Decoder Transformer: Model-Internal Parallel Decoding with Speculative Invariance via Note Conditioning
Autoregressive decoding in Large Language Models (LLMs) is inherently sequential, creating a latency bottleneck that scales linearly with output length. While ``Decomposition-and-Fill'' methods like Skeleton-of-Thought attempt to parallelize generation via external orchestration, they suffer from coherence drift due to the lack of cross-stream communication. In this work, we introduce the Parallel Decoder Transformer (PDT), a parameter-efficient architecture that embeds coordination primitives directly into the inference process of a frozen pre-trained model. Instead of retraining the base model, PDT injects lightweight Speculative Note Conditioning (SNC) adapters that allow parallel decoding streams to synchronize via a shared, dynamic latent space. We formulate coordination as a speculative consensus problem, where sibling streams broadcast semantic ``notes'' to a global bus, gated by a learned verification head. We validate our approach on a 50,000-step curriculum using a frozen 20B-parameter backbone. Our results demonstrate that PDT achieves effective self-correction, reaching 77.8\% precision in coverage prediction and recovering approximate serial semantics without modifying the trunk weights. This establishes PDT as a scalable, efficient alternative to full model fine-tuning for structured parallel generation.
Explicit Estimation of Magnitude and Phase Spectra in Parallel for High-Quality Speech Enhancement
Phase information has a significant impact on speech perceptual quality and intelligibility. However, existing speech enhancement methods encounter limitations in explicit phase estimation due to the non-structural nature and wrapping characteristics of the phase, leading to a bottleneck in enhanced speech quality. To overcome the above issue, in this paper, we proposed MP-SENet, a novel Speech Enhancement Network that explicitly enhances Magnitude and Phase spectra in parallel. The proposed MP-SENet comprises a Transformer-embedded encoder-decoder architecture. The encoder aims to encode the input distorted magnitude and phase spectra into time-frequency representations, which are further fed into time-frequency Transformers for alternatively capturing time and frequency dependencies. The decoder comprises a magnitude mask decoder and a phase decoder, directly enhancing magnitude and wrapped phase spectra by incorporating a magnitude masking architecture and a phase parallel estimation architecture, respectively. Multi-level loss functions explicitly defined on the magnitude spectra, wrapped phase spectra, and short-time complex spectra are adopted to jointly train the MP-SENet model. A metric discriminator is further employed to compensate for the incomplete correlation between these losses and human auditory perception. Experimental results demonstrate that our proposed MP-SENet achieves state-of-the-art performance across multiple speech enhancement tasks, including speech denoising, dereverberation, and bandwidth extension. Compared to existing phase-aware speech enhancement methods, it further mitigates the compensation effect between the magnitude and phase by explicit phase estimation, elevating the perceptual quality of enhanced speech.
TCNCA: Temporal Convolution Network with Chunked Attention for Scalable Sequence Processing
MEGA is a recent transformer-based architecture, which utilizes a linear recurrent operator whose parallel computation, based on the FFT, scales as O(LlogL), with L being the sequence length. We build upon their approach by replacing the linear recurrence with a special temporal convolutional network which permits larger receptive field size with shallower networks, and reduces the computational complexity to O(L). The resulting model is called TCNCA, a Temporal Convolutional Network with Chunked Attention. We evaluate TCNCA on EnWik8 language modeling, long-range-arena (LRA) sequence classification, as well as a synthetic reasoning benchmark associative recall. On EnWik8, TCNCA outperforms MEGA, reaching a lower loss with 1.37times/1.24times faster forward/backward pass during training. The dilated convolutions used in TCNCA are consistently and significantly faster operations than the FFT-based parallelized recurrence in GPUs, making them a scalable candidate for handling very large sequence lengths: they are up to 7.07times/2.86times faster in the forward/backward pass for sequences up to 131k. Further on LRA, TCNCA achieves, on average, 1.28times speed-up during inference with similar accuracy to what MEGA achieves. On associative recall, we find that even a simplified version of TCNCA, without excessive multiplicative and additive interactions, remains superior or competitive to MEGA on a range of sequence lengths and vocabulary sizes.
UniMuMo: Unified Text, Music and Motion Generation
We introduce UniMuMo, a unified multimodal model capable of taking arbitrary text, music, and motion data as input conditions to generate outputs across all three modalities. To address the lack of time-synchronized data, we align unpaired music and motion data based on rhythmic patterns to leverage existing large-scale music-only and motion-only datasets. By converting music, motion, and text into token-based representation, our model bridges these modalities through a unified encoder-decoder transformer architecture. To support multiple generation tasks within a single framework, we introduce several architectural improvements. We propose encoding motion with a music codebook, mapping motion into the same feature space as music. We introduce a music-motion parallel generation scheme that unifies all music and motion generation tasks into a single transformer decoder architecture with a single training task of music-motion joint generation. Moreover, the model is designed by fine-tuning existing pre-trained single-modality models, significantly reducing computational demands. Extensive experiments demonstrate that UniMuMo achieves competitive results on all unidirectional generation benchmarks across music, motion, and text modalities. Quantitative results are available in the https://hanyangclarence.github.io/unimumo_demo/{project page}.
DEPLAIN: A German Parallel Corpus with Intralingual Translations into Plain Language for Sentence and Document Simplification
Text simplification is an intralingual translation task in which documents, or sentences of a complex source text are simplified for a target audience. The success of automatic text simplification systems is highly dependent on the quality of parallel data used for training and evaluation. To advance sentence simplification and document simplification in German, this paper presents DEplain, a new dataset of parallel, professionally written and manually aligned simplifications in plain German ("plain DE" or in German: "Einfache Sprache"). DEplain consists of a news domain (approx. 500 document pairs, approx. 13k sentence pairs) and a web-domain corpus (approx. 150 aligned documents, approx. 2k aligned sentence pairs). In addition, we are building a web harvester and experimenting with automatic alignment methods to facilitate the integration of non-aligned and to be published parallel documents. Using this approach, we are dynamically increasing the web domain corpus, so it is currently extended to approx. 750 document pairs and approx. 3.5k aligned sentence pairs. We show that using DEplain to train a transformer-based seq2seq text simplification model can achieve promising results. We make available the corpus, the adapted alignment methods for German, the web harvester and the trained models here: https://github.com/rstodden/DEPlain.
Falcon-H1: A Family of Hybrid-Head Language Models Redefining Efficiency and Performance
In this report, we introduce Falcon-H1, a new series of large language models (LLMs) featuring hybrid architecture designs optimized for both high performance and efficiency across diverse use cases. Unlike earlier Falcon models built solely on Transformer or Mamba architectures, Falcon-H1 adopts a parallel hybrid approach that combines Transformer-based attention with State Space Models (SSMs), known for superior long-context memory and computational efficiency. We systematically revisited model design, data strategy, and training dynamics, challenging conventional practices in the field. Falcon-H1 is released in multiple configurations, including base and instruction-tuned variants at 0.5B, 1.5B, 1.5B-deep, 3B, 7B, and 34B parameters. Quantized instruction-tuned models are also available, totaling over 30 checkpoints on Hugging Face Hub. Falcon-H1 models demonstrate state-of-the-art performance and exceptional parameter and training efficiency. The flagship Falcon-H1-34B matches or outperforms models up to 70B scale, such as Qwen3-32B, Qwen2.5-72B, and Llama3.3-70B, while using fewer parameters and less data. Smaller models show similar trends: the Falcon-H1-1.5B-Deep rivals current leading 7B-10B models, and Falcon-H1-0.5B performs comparably to typical 7B models from 2024. These models excel across reasoning, mathematics, multilingual tasks, instruction following, and scientific knowledge. With support for up to 256K context tokens and 18 languages, Falcon-H1 is suitable for a wide range of applications. All models are released under a permissive open-source license, underscoring our commitment to accessible and impactful AI research.
MIS-FM: 3D Medical Image Segmentation using Foundation Models Pretrained on a Large-Scale Unannotated Dataset
Pretraining with large-scale 3D volumes has a potential for improving the segmentation performance on a target medical image dataset where the training images and annotations are limited. Due to the high cost of acquiring pixel-level segmentation annotations on the large-scale pretraining dataset, pretraining with unannotated images is highly desirable. In this work, we propose a novel self-supervised learning strategy named Volume Fusion (VF) for pretraining 3D segmentation models. It fuses several random patches from a foreground sub-volume to a background sub-volume based on a predefined set of discrete fusion coefficients, and forces the model to predict the fusion coefficient of each voxel, which is formulated as a self-supervised segmentation task without manual annotations. Additionally, we propose a novel network architecture based on parallel convolution and transformer blocks that is suitable to be transferred to different downstream segmentation tasks with various scales of organs and lesions. The proposed model was pretrained with 110k unannotated 3D CT volumes, and experiments with different downstream segmentation targets including head and neck organs, thoracic/abdominal organs showed that our pretrained model largely outperformed training from scratch and several state-of-the-art self-supervised training methods and segmentation models. The code and pretrained model are available at https://github.com/openmedlab/MIS-FM.
Whisfusion: Parallel ASR Decoding via a Diffusion Transformer
Fast Automatic Speech Recognition (ASR) is critical for latency-sensitive applications such as real-time captioning and meeting transcription. However, truly parallel ASR decoding remains challenging due to the sequential nature of autoregressive (AR) decoders and the context limitations of non-autoregressive (NAR) methods. While modern ASR encoders can process up to 30 seconds of audio at once, AR decoders still generate tokens sequentially, creating a latency bottleneck. We propose Whisfusion, the first framework to fuse a pre-trained Whisper encoder with a text diffusion decoder. This NAR architecture resolves the AR latency bottleneck by processing the entire acoustic context in parallel at every decoding step. A lightweight cross-attention adapter trained via parameter-efficient fine-tuning (PEFT) bridges the two modalities. We also introduce a batch-parallel, multi-step decoding strategy that improves accuracy by increasing the number of candidates with minimal impact on speed. Fine-tuned solely on LibriSpeech (960h), Whisfusion achieves a lower WER than Whisper-tiny (8.3% vs. 9.7%), and offers comparable latency on short audio. For longer utterances (>20s), it is up to 2.6x faster than the AR baseline, establishing a new, efficient operating point for long-form ASR. The implementation and training scripts are available at https://github.com/taeyoun811/Whisfusion.
Accelerating Transformer Inference for Translation via Parallel Decoding
Autoregressive decoding limits the efficiency of transformers for Machine Translation (MT). The community proposed specific network architectures and learning-based methods to solve this issue, which are expensive and require changes to the MT model, trading inference speed at the cost of the translation quality. In this paper, we propose to address the problem from the point of view of decoding algorithms, as a less explored but rather compelling direction. We propose to reframe the standard greedy autoregressive decoding of MT with a parallel formulation leveraging Jacobi and Gauss-Seidel fixed-point iteration methods for fast inference. This formulation allows to speed up existing models without training or modifications while retaining translation quality. We present three parallel decoding algorithms and test them on different languages and models showing how the parallelization introduces a speedup up to 38% w.r.t. the standard autoregressive decoding and nearly 2x when scaling the method on parallel resources. Finally, we introduce a decoding dependency graph visualizer (DDGviz) that let us see how the model has learned the conditional dependence between tokens and inspect the decoding procedure.
Branchformer: Parallel MLP-Attention Architectures to Capture Local and Global Context for Speech Recognition and Understanding
Conformer has proven to be effective in many speech processing tasks. It combines the benefits of extracting local dependencies using convolutions and global dependencies using self-attention. Inspired by this, we propose a more flexible, interpretable and customizable encoder alternative, Branchformer, with parallel branches for modeling various ranged dependencies in end-to-end speech processing. In each encoder layer, one branch employs self-attention or its variant to capture long-range dependencies, while the other branch utilizes an MLP module with convolutional gating (cgMLP) to extract local relationships. We conduct experiments on several speech recognition and spoken language understanding benchmarks. Results show that our model outperforms both Transformer and cgMLP. It also matches with or outperforms state-of-the-art results achieved by Conformer. Furthermore, we show various strategies to reduce computation thanks to the two-branch architecture, including the ability to have variable inference complexity in a single trained model. The weights learned for merging branches indicate how local and global dependencies are utilized in different layers, which benefits model designing.
TraHGR: Transformer for Hand Gesture Recognition via ElectroMyography
Deep learning-based Hand Gesture Recognition (HGR) via surface Electromyogram (sEMG) signals has recently shown significant potential for development of advanced myoelectric-controlled prosthesis. Existing deep learning approaches, typically, include only one model as such can hardly maintain acceptable generalization performance in changing scenarios. In this paper, we aim to address this challenge by capitalizing on the recent advances of hybrid models and transformers. In other words, we propose a hybrid framework based on the transformer architecture, which is a relatively new and revolutionizing deep learning model. The proposed hybrid architecture, referred to as the Transformer for Hand Gesture Recognition (TraHGR), consists of two parallel paths followed by a linear layer that acts as a fusion center to integrate the advantage of each module and provide robustness over different scenarios. We evaluated the proposed architecture TraHGR based on the commonly used second Ninapro dataset, referred to as the DB2. The sEMG signals in the DB2 dataset are measured in the real-life conditions from 40 healthy users, each performing 49 gestures. We have conducted extensive set of experiments to test and validate the proposed TraHGR architecture, and have compared its achievable accuracy with more than five recently proposed HGR classification algorithms over the same dataset. We have also compared the results of the proposed TraHGR architecture with each individual path and demonstrated the distinguishing power of the proposed hybrid architecture. The recognition accuracies of the proposed TraHGR architecture are 86.18%, 88.91%, 81.44%, and 93.84%, which are 2.48%, 5.12%, 8.82%, and 4.30% higher than the state-ofthe-art performance for DB2 (49 gestures), DB2-B (17 gestures), DB2-C (23 gestures), and DB2-D (9 gestures), respectively.
Speculative MoE: Communication Efficient Parallel MoE Inference with Speculative Token and Expert Pre-scheduling
MoE (Mixture of Experts) prevails as a neural architecture that can scale modern transformer-based LLMs (Large Language Models) to unprecedented scales. Nevertheless, large MoEs' great demands of computing power, memory capacity and memory bandwidth make scalable serving a fundamental challenge and efficient parallel inference has become a requisite to attain adequate throughput under latency constraints. DeepSpeed-MoE, one state-of-the-art MoE inference framework, adopts a 3D-parallel paradigm including EP (Expert Parallelism), TP (Tensor Parallel) and DP (Data Parallelism). However, our analysis shows DeepSpeed-MoE's inference efficiency is largely bottlenecked by EP, which is implemented with costly all-to-all collectives to route token activation. Our work aims to boost DeepSpeed-MoE by strategically reducing EP's communication overhead with a technique named Speculative MoE. Speculative MoE has two speculative parallelization schemes, speculative token shuffling and speculative expert grouping, which predict outstanding tokens' expert routing paths and pre-schedule tokens and experts across devices to losslessly trim EP's communication volume. Besides DeepSpeed-MoE, we also build Speculative MoE into a prevailing MoE inference engine SGLang. Experiments show Speculative MoE can significantly boost state-of-the-art MoE inference frameworks on fast homogeneous and slow heterogeneous interconnects.
EnergonAI: An Inference System for 10-100 Billion Parameter Transformer Models
Large transformer models display promising performance on a wide range of natural language processing (NLP) tasks. Although the AI community has expanded the model scale to the trillion parameter level, the practical deployment of 10-100 billion parameter models is still uncertain due to the latency, throughput, and memory constraints. In this paper, we proposed EnergonAI to solve the challenges of the efficient deployment of 10-100 billion parameter transformer models on single- or multi-GPU systems. EnergonAI adopts a hierarchy-controller system architecture to coordinate multiple devices and efficiently support different parallel patterns. It delegates the execution of sub-models to multiple workers in the single-controller style and applies tensor parallelism and pipeline parallelism among the workers in a multi-controller style. Upon the novel architecture, we propose three techniques, i.e. non-blocking pipeline parallelism, distributed redundant computation elimination, and peer memory pooling. EnergonAI enables the users to program complex parallel code the same as a serial one. Compared with the FasterTransformer, we have proven that EnergonAI has superior performance on latency and throughput. In our experiments, EnergonAI can achieve 37% latency reduction in tensor parallelism, 10% scalability improvement in pipeline parallelism, and it improves the model scale inferred on a single GPU by using a larger heterogeneous memory space at cost of limited performance reduction.
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
We design a family of image classification architectures that optimize the trade-off between accuracy and efficiency in a high-speed regime. Our work exploits recent findings in attention-based architectures, which are competitive on highly parallel processing hardware. We revisit principles from the extensive literature on convolutional neural networks to apply them to transformers, in particular activation maps with decreasing resolutions. We also introduce the attention bias, a new way to integrate positional information in vision transformers. As a result, we propose LeVIT: a hybrid neural network for fast inference image classification. We consider different measures of efficiency on different hardware platforms, so as to best reflect a wide range of application scenarios. Our extensive experiments empirically validate our technical choices and show they are suitable to most architectures. Overall, LeViT significantly outperforms existing convnets and vision transformers with respect to the speed/accuracy tradeoff. For example, at 80% ImageNet top-1 accuracy, LeViT is 5 times faster than EfficientNet on CPU. We release the code at https://github.com/facebookresearch/LeViT
Theme Transformer: Symbolic Music Generation with Theme-Conditioned Transformer
Attention-based Transformer models have been increasingly employed for automatic music generation. To condition the generation process of such a model with a user-specified sequence, a popular approach is to take that conditioning sequence as a priming sequence and ask a Transformer decoder to generate a continuation. However, this prompt-based conditioning cannot guarantee that the conditioning sequence would develop or even simply repeat itself in the generated continuation. In this paper, we propose an alternative conditioning approach, called theme-based conditioning, that explicitly trains the Transformer to treat the conditioning sequence as a thematic material that has to manifest itself multiple times in its generation result. This is achieved with two main technical contributions. First, we propose a deep learning-based approach that uses contrastive representation learning and clustering to automatically retrieve thematic materials from music pieces in the training data. Second, we propose a novel gated parallel attention module to be used in a sequence-to-sequence (seq2seq) encoder/decoder architecture to more effectively account for a given conditioning thematic material in the generation process of the Transformer decoder. We report on objective and subjective evaluations of variants of the proposed Theme Transformer and the conventional prompt-based baseline, showing that our best model can generate, to some extent, polyphonic pop piano music with repetition and plausible variations of a given condition.
Towards Understanding How Transformer Perform Multi-step Reasoning with Matching Operation
Large language models have consistently struggled with complex reasoning tasks, such as mathematical problem-solving. Investigating the internal reasoning mechanisms of these models can help us design better model architectures and training strategies, ultimately enhancing their reasoning capabilities. In this study, we examine the matching mechanism employed by Transformer for multi-step reasoning on a constructed dataset. We investigate factors that influence the model's matching mechanism and discover that small initialization and post-LayerNorm can facilitate the formation of the matching mechanism, thereby enhancing the model's reasoning ability. Moreover, we propose a method to improve the model's reasoning capability by adding orthogonal noise. Finally, we investigate the parallel reasoning mechanism of Transformers and propose a conjecture on the upper bound of the model's reasoning ability based on this phenomenon. These insights contribute to a deeper understanding of the reasoning processes in large language models and guide designing more effective reasoning architectures and training strategies.
Hymba: A Hybrid-head Architecture for Small Language Models
We propose Hymba, a family of small language models featuring a hybrid-head parallel architecture that integrates transformer attention mechanisms with state space models (SSMs) for enhanced efficiency. Attention heads provide high-resolution recall, while SSM heads enable efficient context summarization. Additionally, we introduce learnable meta tokens that are prepended to prompts, storing critical information and alleviating the "forced-to-attend" burden associated with attention mechanisms. This model is further optimized by incorporating cross-layer key-value (KV) sharing and partial sliding window attention, resulting in a compact cache size. During development, we conducted a controlled study comparing various architectures under identical settings and observed significant advantages of our proposed architecture. Notably, Hymba achieves state-of-the-art results for small LMs: Our Hymba-1.5B-Base model surpasses all sub-2B public models in performance and even outperforms Llama-3.2-3B with 1.32% higher average accuracy, an 11.67x cache size reduction, and 3.49x throughput.
Falcon: Faster and Parallel Inference of Large Language Models through Enhanced Semi-Autoregressive Drafting and Custom-Designed Decoding Tree
Striking an optimal balance between minimal drafting latency and high speculation accuracy to enhance the inference speed of Large Language Models remains a significant challenge in speculative decoding. In this paper, we introduce Falcon, an innovative semi-autoregressive speculative decoding framework fashioned to augment both the drafter's parallelism and output quality. Falcon incorporates the Coupled Sequential Glancing Distillation technique, which fortifies inter-token dependencies within the same block, leading to increased speculation accuracy. We offer a comprehensive theoretical analysis to illuminate the underlying mechanisms. Additionally, we introduce a Custom-Designed Decoding Tree, which permits the drafter to generate multiple tokens in a single forward pass and accommodates multiple forward passes as needed, thereby boosting the number of drafted tokens and significantly improving the overall acceptance rate. Comprehensive evaluations on benchmark datasets such as MT-Bench, HumanEval, and GSM8K demonstrate Falcon's superior acceleration capabilities. The framework achieves a lossless speedup ratio ranging from 2.91x to 3.51x when tested on the Vicuna and LLaMA2-Chat model series. These results outstrip existing speculative decoding methods for LLMs, including Eagle, Medusa, Lookahead, SPS, and PLD, while maintaining a compact drafter architecture equivalent to merely two Transformer layers.
Leveraging State Space Models in Long Range Genomics
Long-range dependencies are critical for understanding genomic structure and function, yet most conventional methods struggle with them. Widely adopted transformer-based models, while excelling at short-context tasks, are limited by the attention module's quadratic computational complexity and inability to extrapolate to sequences longer than those seen in training. In this work, we explore State Space Models (SSMs) as a promising alternative by benchmarking two SSM-inspired architectures, Caduceus and Hawk, on long-range genomics modeling tasks under conditions parallel to a 50M parameter transformer baseline. We discover that SSMs match transformer performance and exhibit impressive zero-shot extrapolation across multiple tasks, handling contexts 10 to 100 times longer than those seen during training, indicating more generalizable representations better suited for modeling the long and complex human genome. Moreover, we demonstrate that these models can efficiently process sequences of 1M tokens on a single GPU, allowing for modeling entire genomic regions at once, even in labs with limited compute. Our findings establish SSMs as efficient and scalable for long-context genomic analysis.
Mercury: Ultra-Fast Language Models Based on Diffusion
We present Mercury, a new generation of commercial-scale large language models (LLMs) based on diffusion. These models are parameterized via the Transformer architecture and trained to predict multiple tokens in parallel. In this report, we detail Mercury Coder, our first set of diffusion LLMs designed for coding applications. Currently, Mercury Coder comes in two sizes: Mini and Small. These models set a new state-of-the-art on the speed-quality frontier. Based on independent evaluations conducted by Artificial Analysis, Mercury Coder Mini and Mercury Coder Small achieve state-of-the-art throughputs of 1109 tokens/sec and 737 tokens/sec, respectively, on NVIDIA H100 GPUs and outperform speed-optimized frontier models by up to 10x on average while maintaining comparable quality. We discuss additional results on a variety of code benchmarks spanning multiple languages and use-cases as well as real-world validation by developers on Copilot Arena, where the model currently ranks second on quality and is the fastest model overall. We also release a public API at https://platform.inceptionlabs.ai/ and free playground at https://chat.inceptionlabs.ai
Mixture-of-Domain-Adapters: Decoupling and Injecting Domain Knowledge to Pre-trained Language Models Memories
Pre-trained language models (PLMs) demonstrate excellent abilities to understand texts in the generic domain while struggling in a specific domain. Although continued pre-training on a large domain-specific corpus is effective, it is costly to tune all the parameters on the domain. In this paper, we investigate whether we can adapt PLMs both effectively and efficiently by only tuning a few parameters. Specifically, we decouple the feed-forward networks (FFNs) of the Transformer architecture into two parts: the original pre-trained FFNs to maintain the old-domain knowledge and our novel domain-specific adapters to inject domain-specific knowledge in parallel. Then we adopt a mixture-of-adapters gate to fuse the knowledge from different domain adapters dynamically. Our proposed Mixture-of-Domain-Adapters (MixDA) employs a two-stage adapter-tuning strategy that leverages both unlabeled data and labeled data to help the domain adaptation: i) domain-specific adapter on unlabeled data; followed by ii) the task-specific adapter on labeled data. MixDA can be seamlessly plugged into the pretraining-finetuning paradigm and our experiments demonstrate that MixDA achieves superior performance on in-domain tasks (GLUE), out-of-domain tasks (ChemProt, RCT, IMDB, Amazon), and knowledge-intensive tasks (KILT). Further analyses demonstrate the reliability, scalability, and efficiency of our method. The code is available at https://github.com/Amano-Aki/Mixture-of-Domain-Adapters.
UniAVGen: Unified Audio and Video Generation with Asymmetric Cross-Modal Interactions
Due to the lack of effective cross-modal modeling, existing open-source audio-video generation methods often exhibit compromised lip synchronization and insufficient semantic consistency. To mitigate these drawbacks, we propose UniAVGen, a unified framework for joint audio and video generation. UniAVGen is anchored in a dual-branch joint synthesis architecture, incorporating two parallel Diffusion Transformers (DiTs) to build a cohesive cross-modal latent space. At its heart lies an Asymmetric Cross-Modal Interaction mechanism, which enables bidirectional, temporally aligned cross-attention, thus ensuring precise spatiotemporal synchronization and semantic consistency. Furthermore, this cross-modal interaction is augmented by a Face-Aware Modulation module, which dynamically prioritizes salient regions in the interaction process. To enhance generative fidelity during inference, we additionally introduce Modality-Aware Classifier-Free Guidance, a novel strategy that explicitly amplifies cross-modal correlation signals. Notably, UniAVGen's robust joint synthesis design enables seamless unification of pivotal audio-video tasks within a single model, such as joint audio-video generation and continuation, video-to-audio dubbing, and audio-driven video synthesis. Comprehensive experiments validate that, with far fewer training samples (1.3M vs. 30.1M), UniAVGen delivers overall advantages in audio-video synchronization, timbre consistency, and emotion consistency.
ParaRNN: Unlocking Parallel Training of Nonlinear RNNs for Large Language Models
Recurrent Neural Networks (RNNs) laid the foundation for sequence modeling, but their intrinsic sequential nature restricts parallel computation, creating a fundamental barrier to scaling. This has led to the dominance of parallelizable architectures like Transformers and, more recently, State Space Models (SSMs). While SSMs achieve efficient parallelization through structured linear recurrences, this linearity constraint limits their expressive power and precludes modeling complex, nonlinear sequence-wise dependencies. To address this, we present ParaRNN, a framework that breaks the sequence-parallelization barrier for nonlinear RNNs. Building on prior work, we cast the sequence of nonlinear recurrence relationships as a single system of equations, which we solve in parallel using Newton's iterations combined with custom parallel reductions. Our implementation achieves speedups of up to 665x over naive sequential application, allowing training nonlinear RNNs at unprecedented scales. To showcase this, we apply ParaRNN to adaptations of LSTM and GRU architectures, successfully training models of 7B parameters that attain perplexity comparable to similarly-sized Transformers and Mamba2 architectures. To accelerate research in efficient sequence modeling, we release the ParaRNN codebase as an open-source framework for automatic training-parallelization of nonlinear RNNs, enabling researchers and practitioners to explore new nonlinear RNN models at scale.
PIM-GPT: A Hybrid Process-in-Memory Accelerator for Autoregressive Transformers
Decoder-only Transformer models such as GPT have demonstrated superior performance in text generation, by autoregressively predicting the next token. However, the performance of GPT is bounded by low compute-to-memory-ratio and high memory access. Throughput-oriented architectures such as GPUs target parallel processing rather than sequential token generation, and are not efficient for GPT acceleration, particularly on-device inference applications. Process-in-memory (PIM) architectures can significantly reduce data movement and provide high computation parallelism, and are promising candidates to accelerate GPT inference. In this work, we propose PIM-GPT that aims to achieve high throughput, high energy efficiency and end-to-end acceleration of GPT inference. PIM-GPT leverages DRAM-based PIM solutions to perform multiply-accumulate (MAC) operations on the DRAM chips, greatly reducing data movement. A compact application-specific integrated chip (ASIC) is designed and synthesized to initiate instructions to PIM chips and support data communication along with necessary arithmetic computations. At the software level, the mapping scheme is designed to maximize data locality and computation parallelism by partitioning a matrix among DRAM channels and banks to utilize all in-bank computation resources concurrently. We develop an event-driven clock-cycle accurate simulator to validate the efficacy of the proposed PIM-GPT architecture. Overall, PIM-GPT achieves 41-137times, 631-1074times speedup and 339-1085times, 890-1632times energy efficiency over GPU and CPU baseline, respectively, on 8 GPT models with up to 1.4 billion parameters.
Incremental FastPitch: Chunk-based High Quality Text to Speech
Parallel text-to-speech models have been widely applied for real-time speech synthesis, and they offer more controllability and a much faster synthesis process compared with conventional auto-regressive models. Although parallel models have benefits in many aspects, they become naturally unfit for incremental synthesis due to their fully parallel architecture such as transformer. In this work, we propose Incremental FastPitch, a novel FastPitch variant capable of incrementally producing high-quality Mel chunks by improving the architecture with chunk-based FFT blocks, training with receptive-field constrained chunk attention masks, and inference with fixed size past model states. Experimental results show that our proposal can produce speech quality comparable to the parallel FastPitch, with a significant lower latency that allows even lower response time for real-time speech applications.
Thinking Like Transformers
What is the computational model behind a Transformer? Where recurrent neural networks have direct parallels in finite state machines, allowing clear discussion and thought around architecture variants or trained models, Transformers have no such familiar parallel. In this paper we aim to change that, proposing a computational model for the transformer-encoder in the form of a programming language. We map the basic components of a transformer-encoder -- attention and feed-forward computation -- into simple primitives, around which we form a programming language: the Restricted Access Sequence Processing Language (RASP). We show how RASP can be used to program solutions to tasks that could conceivably be learned by a Transformer, and how a Transformer can be trained to mimic a RASP solution. In particular, we provide RASP programs for histograms, sorting, and Dyck-languages. We further use our model to relate their difficulty in terms of the number of required layers and attention heads: analyzing a RASP program implies a maximum number of heads and layers necessary to encode a task in a transformer. Finally, we see how insights gained from our abstraction might be used to explain phenomena seen in recent works.
MP-SENet: A Speech Enhancement Model with Parallel Denoising of Magnitude and Phase Spectra
This paper proposes MP-SENet, a novel Speech Enhancement Network which directly denoises Magnitude and Phase spectra in parallel. The proposed MP-SENet adopts a codec architecture in which the encoder and decoder are bridged by convolution-augmented transformers. The encoder aims to encode time-frequency representations from the input noisy magnitude and phase spectra. The decoder is composed of parallel magnitude mask decoder and phase decoder, directly recovering clean magnitude spectra and clean-wrapped phase spectra by incorporating learnable sigmoid activation and parallel phase estimation architecture, respectively. Multi-level losses defined on magnitude spectra, phase spectra, short-time complex spectra, and time-domain waveforms are used to train the MP-SENet model jointly. Experimental results show that our proposed MP-SENet achieves a PESQ of 3.50 on the public VoiceBank+DEMAND dataset and outperforms existing advanced speech enhancement methods.
Structured Linear CDEs: Maximally Expressive and Parallel-in-Time Sequence Models
This work introduces Structured Linear Controlled Differential Equations (SLiCEs), a unifying framework for sequence models with structured, input-dependent state-transition matrices that retain the maximal expressivity of dense matrices whilst being cheaper to compute. The framework encompasses existing architectures, such as input-dependent block-diagonal linear recurrent neural networks and DeltaNet's diagonal-plus-low-rank structure, as well as two novel variants based on sparsity and the Walsh-Hadamard transform. We prove that, unlike the diagonal state-transition matrices of S4D and Mamba, SLiCEs employing block-diagonal, sparse, or Walsh-Hadamard matrices match the maximal expressivity of dense matrices. Empirically, SLiCEs solve the A_5 state-tracking benchmark with a single layer, achieve best-in-class length generalisation on regular language tasks among parallel-in-time models, and match the performance of log neural controlled differential equations on six multivariate time-series classification datasets while cutting the average time per training step by a factor of twenty.
