Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMiroMind-M1: An Open-Source Advancement in Mathematical Reasoning via Context-Aware Multi-Stage Policy Optimization
Large language models have recently evolved from fluent text generation to advanced reasoning across diverse domains, giving rise to reasoning language models. Among these domains, mathematical reasoning serves as a representative benchmark as it requires precise multi-step logic and abstract reasoning, which can be generalized to other tasks. While closed-source RLMs such as GPT-o3 demonstrate impressive reasoning capabilities, their proprietary nature limits transparency and reproducibility. Although many open-source projects aim to close this gap, most of them lack sufficient openness by omitting critical resources such as datasets and detailed training configurations, which hinders reproducibility. To contribute toward greater transparency in RLM development, we introduce the MiroMind-M1 series, a set of fully open-source RLMs built on the Qwen-2.5 backbone that match or exceed the performance of existing open-source RLMs. Specifically, our models are trained in two stages: SFT on a carefully curated corpus of 719K math-reasoning problems with verified CoT trajectories, followed by RLVR on 62K challenging and verifiable problems. To enhance the robustness and efficiency of the RLVR process, we introduce Context-Aware Multi-Stage Policy Optimization, an algorithm that integrates length-progressive training with an adaptive repetition penalty to encourage context-aware RL training. Our model achieves state-of-the-art or competitive performance and superior token efficiency among Qwen-2.5-based open-source 7B and 32B models on the AIME24, AIME25, and MATH benchmarks. To facilitate reproducibility, we release the complete stack: models (MiroMind-M1-SFT-7B, MiroMind-M1-RL-7B, MiroMind-M1-RL-32B); datasets (MiroMind-M1-SFT-719K, MiroMind-M1-RL-62K); and all training and evaluation configurations. We hope these resources will support further research and foster community advancement.
Data-Efficient RLVR via Off-Policy Influence Guidance
Data selection is a critical aspect of Reinforcement Learning with Verifiable Rewards (RLVR) for enhancing the reasoning capabilities of large language models (LLMs). Current data selection methods are largely heuristic-based, lacking theoretical guarantees and generalizability. This work proposes a theoretically-grounded approach using influence functions to estimate the contribution of each data point to the learning objective. To overcome the prohibitive computational cost of policy rollouts required for online influence estimation, we introduce an off-policy influence estimation method that efficiently approximates data influence using pre-collected offline trajectories. Furthermore, to manage the high-dimensional gradients of LLMs, we employ sparse random projection to reduce dimensionality and improve storage and computation efficiency. Leveraging these techniques, we develop Curriculum RL with Off-Policy Influence guidance (CROPI), a multi-stage RL framework that iteratively selects the most influential data for the current policy. Experiments on models up to 7B parameters demonstrate that CROPI significantly accelerates training. On a 1.5B model, it achieves a 2.66x step-level acceleration while using only 10\% of the data per stage compared to full-dataset training. Our results highlight the substantial potential of influence-based data selection for efficient RLVR.
Depth-Breadth Synergy in RLVR: Unlocking LLM Reasoning Gains with Adaptive Exploration
Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models, yet its full potential is hindered by two under-explored dimensions: Depth-the hardest problem a model can sample; Breadth-the number of instances consumed in a single iteration. We dissect the popular GRPO algorithm and reveal a systematic bias: the cumulative-advantage disproportionately weights samples with medium accuracy, while down-weighting the low-accuracy instances that are crucial for pushing reasoning boundaries. To rectify the depth neglect, we introduce Difficulty Adaptive Rollout Sampling (DARS), which re-weights hard problems through targeted multi-stage rollouts, thereby increasing the number of positive rollouts for hard problems. Empirically, naively enlarging rollout size only accelerates convergence and even hurts Pass@K. Our DARS, in contrast, delivers consistent Pass@K gains without extra inference cost at convergence. Just as we adaptively expanded the depth of exploration, we now ask whether aggressively scaling the breadth of training data can further amplify reasoning gains. To this end, we intensely scale batch size and replace PPO's mini-batch iterations with full-batch updates over multiple epochs. Increasing breadth significantly enhances Pass@1 performance. Large-breadth training sustains high token-level entropy, indicating continued exploration and reduced gradient noise. We further present DARS-B, which augments DARS with large breadth, and demonstrate simultaneous gains in Pass@K and Pass@1. The results confirm that breadth and adaptive exploration across depth operate as orthogonal dimensions in RLVR, which are key to unleashing the reasoning power of RLVR.
Conan: Progressive Learning to Reason Like a Detective over Multi-Scale Visual Evidence
Video reasoning, which requires multi-step deduction across frames, remains a major challenge for multimodal large language models (MLLMs). While reinforcement learning (RL)-based methods enhance reasoning capabilities, they often rely on text-only chains that yield ungrounded or hallucinated conclusions. Conversely, frame-retrieval approaches introduce visual grounding but still struggle with inaccurate evidence localization. To address these challenges, we present Conan, a framework for evidence-grounded multi-step video reasoning. Conan identifies contextual and evidence frames, reasons over cross-frame clues, and adaptively decides when to conclude or explore further. To achieve this, we (1) construct Conan-91K, a large-scale dataset of automatically generated reasoning traces that includes frame identification, evidence reasoning, and action decision, and (2) design a multi-stage progressive cold-start strategy combined with an Identification-Reasoning-Action (AIR) RLVR training framework to jointly enhance multi-step visual reasoning. Extensive experiments on six multi-step reasoning benchmarks demonstrate that Conan surpasses the baseline Qwen2.5-VL-7B-Instruct by an average of over 10% in accuracy, achieving state-of-the-art performance. Furthermore, Conan generalizes effectively to long-video understanding tasks, validating its strong scalability and robustness.
MoDoMoDo: Multi-Domain Data Mixtures for Multimodal LLM Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for post-training large language models (LLMs), achieving state-of-the-art performance on tasks with structured, verifiable answers. Applying RLVR to Multimodal LLMs (MLLMs) presents significant opportunities but is complicated by the broader, heterogeneous nature of vision-language tasks that demand nuanced visual, logical, and spatial capabilities. As such, training MLLMs using RLVR on multiple datasets could be beneficial but creates challenges with conflicting objectives from interaction among diverse datasets, highlighting the need for optimal dataset mixture strategies to improve generalization and reasoning. We introduce a systematic post-training framework for Multimodal LLM RLVR, featuring a rigorous data mixture problem formulation and benchmark implementation. Specifically, (1) We developed a multimodal RLVR framework for multi-dataset post-training by curating a dataset that contains different verifiable vision-language problems and enabling multi-domain online RL learning with different verifiable rewards; (2) We proposed a data mixture strategy that learns to predict the RL fine-tuning outcome from the data mixture distribution, and consequently optimizes the best mixture. Comprehensive experiments showcase that multi-domain RLVR training, when combined with mixture prediction strategies, can significantly boost MLLM general reasoning capacities. Our best mixture improves the post-trained model's accuracy on out-of-distribution benchmarks by an average of 5.24% compared to the same model post-trained with uniform data mixture, and by a total of 20.74% compared to the pre-finetuning baseline.
Thinking-Free Policy Initialization Makes Distilled Reasoning Models More Effective and Efficient Reasoners
Reinforcement Learning with Verifiable Reward (RLVR) effectively solves complex tasks but demands extremely long context lengths during training, leading to substantial computational costs. While multi-stage training can partially mitigate this, starting with overly short contexts often causes irreversible performance degradation, ultimately failing to reduce overall training compute significantly. In this paper, we introduce **T**hinking-**F**ree **P**olicy **I**nitialization (**TFPI**), a simple yet effective adaptation to RLVR that bridges long Chain-of-Thought (CoT) distillation and standard RLVR. TFPI employs a simple *ThinkFree* operation, explicitly discarding the thinking content via a direct *</think>* append, to reduce token usage during inference. Training with *ThinkFree*-adapted inputs improves performance and lowers token consumption, even in the original slow-thinking mode. Extensive experiments across various benchmarks have shown that TFPI accelerates RL convergence, achieves a higher performance ceiling, and yields more token-efficient reasoning models without specialized rewards or complex training designs. With TFPI only, we train a 4B model to reach 89.0% accuracy on AIME24 and 65.5% on LiveCodeBench using less than 4K H20 hours.
Implicit Actor Critic Coupling via a Supervised Learning Framework for RLVR
Recent advances in Reinforcement Learning with Verifiable Rewards (RLVR) have empowered large language models (LLMs) to tackle challenging reasoning tasks such as mathematics and programming. RLVR leverages verifiable outcome rewards to guide policy optimization, enabling LLMs to progressively improve output quality in a grounded and reliable manner. Despite its promise, the RLVR paradigm poses significant challenges, as existing methods often suffer from sparse reward signals and unstable policy gradient updates, particularly in RL-based approaches. To address the challenges, we propose PACS, a novel RLVR framework that achieves imPlicit Actor Critic coupling via a Supervised learning framework. By treating the outcome reward as a predictable label, we reformulate the RLVR problem into a supervised learning task over a score function parameterized by the policy model and optimized using cross-entropy loss. A detailed gradient analysis shows that this supervised formulation inherently recovers the classical policy gradient update while implicitly coupling actor and critic roles, yielding more stable and efficient training. Benchmarking on challenging mathematical reasoning tasks, PACS outperforms strong RLVR baselines, such as PPO and GRPO, achieving superior reasoning performance. For instance, PACS achieves 59.78\% at pass@256 on AIME 2025, representing improvements of 13.32 and 14.36 points over PPO and GRPO. This simple yet powerful framework offers a promising avenue for LLMs post-training with verifiable rewards. Our code and data are available as open source at https://github.com/ritzz-ai/PACS.
RubricHub: A Comprehensive and Highly Discriminative Rubric Dataset via Automated Coarse-to-Fine Generation
Reinforcement Learning with Verifiable Rewards (RLVR) has driven substantial progress in reasoning-intensive domains like mathematics. However, optimizing open-ended generation remains challenging due to the lack of ground truth. While rubric-based evaluation offers a structured proxy for verification, existing methods suffer from scalability bottlenecks and coarse criteria, resulting in a supervision ceiling effect. To address this, we propose an automated Coarse-to-Fine Rubric Generation framework. By synergizing principle-guided synthesis, multi-model aggregation, and difficulty evolution, our approach produces comprehensive and highly discriminative criteria capable of capturing the subtle nuances. Based on this framework, we introduce RubricHub, a large-scale (sim110k) and multi-domain dataset. We validate its utility through a two-stage post-training pipeline comprising Rubric-based Rejection Sampling Fine-Tuning (RuFT) and Reinforcement Learning (RuRL). Experimental results demonstrate that RubricHub unlocks significant performance gains: our post-trained Qwen3-14B achieves state-of-the-art (SOTA) results on HealthBench (69.3), surpassing proprietary frontier models such as GPT-5. The code and data will be released soon.
DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search
Although RLVR has become an essential component for developing advanced reasoning skills in LLMs, contemporary studies have documented training plateaus that emerge following thousands of optimization steps, demonstrating notable decreases in performance gains despite increased computational investment. This limitation stems from the sparse exploration patterns inherent in current RLVR practices, where models rely on limited rollouts that often miss critical reasoning paths and fail to provide systematic coverage of the solution space. We present DeepSearch, a framework that integrates Monte Carlo Tree Search directly into RLVR training. In contrast to existing methods that rely on tree search only at inference, DeepSearch embeds structured search into the training loop, enabling systematic exploration and fine-grained credit assignment across reasoning steps. Through training-time exploration, DeepSearch addresses the fundamental bottleneck of insufficient exploration, which leads to diminishing performance improvements over prolonged training steps. Our contributions include: (1) a global frontier selection strategy that prioritizes promising nodes across the search tree, (2) selection with entropy-based guidance that identifies confident paths for supervision, and (3) adaptive replay buffer training with solution caching for efficiency. Experiments on mathematical reasoning benchmarks show that DeepSearch achieves 62.95% average accuracy and establishes a new state-of-the-art for 1.5B reasoning models - using 5.7x fewer GPU hours than extended training approaches. These results highlight the importance of strategic exploration over brute-force scaling and demonstrate the promise of algorithmic innovation for advancing RLVR methodologies. DeepSearch establishes a new direction for scaling reasoning capabilities through systematic search rather than prolonged computation.
More Than One Teacher: Adaptive Multi-Guidance Policy Optimization for Diverse Exploration
Reinforcement Learning with Verifiable Rewards (RLVR) is a promising paradigm for enhancing the reasoning ability in Large Language Models (LLMs). However, prevailing methods primarily rely on self-exploration or a single off-policy teacher to elicit long chain-of-thought (LongCoT) reasoning, which may introduce intrinsic model biases and restrict exploration, ultimately limiting reasoning diversity and performance. Drawing inspiration from multi-teacher strategies in knowledge distillation, we introduce Adaptive Multi-Guidance Policy Optimization (AMPO), a novel framework that adaptively leverages guidance from multiple proficient teacher models, but only when the on-policy model fails to generate correct solutions. This "guidance-on-demand" approach expands exploration while preserving the value of self-discovery. Moreover, AMPO incorporates a comprehension-based selection mechanism, prompting the student to learn from the reasoning paths that it is most likely to comprehend, thus balancing broad exploration with effective exploitation. Extensive experiments show AMPO substantially outperforms a strong baseline (GRPO), with a 4.3% improvement on mathematical reasoning tasks and 12.2% on out-of-distribution tasks, while significantly boosting Pass@k performance and enabling more diverse exploration. Notably, using four peer-sized teachers, our method achieves comparable results to approaches that leverage a single, more powerful teacher (e.g., DeepSeek-R1) with more data. These results demonstrate a more efficient and scalable path to superior reasoning and generalizability. Our code is available at https://github.com/SII-Enigma/AMPO.
VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2times speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.
Semantic Soft Bootstrapping: Long Context Reasoning in LLMs without Reinforcement Learning
Long context reasoning in large language models (LLMs) has demonstrated enhancement of their cognitive capabilities via chain-of-thought (CoT) inference. Training such models is usually done via reinforcement learning with verifiable rewards (RLVR) in reasoning based problems, like math and programming. However, RLVR is limited by several bottlenecks, such as, lack of dense reward, and inadequate sample efficiency. As a result, it requires significant compute resources in post-training phase. To overcome these limitations, in this work, we propose Semantic Soft Bootstrapping (SSB), a self-distillation technique, in which the same base language model plays the role of both teacher and student, but receives different semantic contexts about the correctness of its outcome at training time. The model is first prompted with a math problem and several rollouts are generated. From them, the correct and most common incorrect response are filtered, and then provided to the model in context to produce a more robust, step-by-step explanation with a verified final answer. This pipeline automatically curates a paired teacher-student training set from raw problem-answer data, without any human intervention. This generation process also produces a sequence of logits, which is what the student model tries to match in the training phase just from the bare question alone. In our experiment, Qwen2.5-3B-Instruct on GSM8K dataset via parameter-efficient fine-tuning. We then tested its accuracy on MATH500, and AIME2024 benchmarks. Our experiments show a jump of 10.6%, and 10% improvements in accuracy, respectively, over group relative policy optimization (GRPO), which is a commonly used RLVR algorithm. Our code is available at https://github.com/purbeshmitra/semantic-soft-bootstrapping, and the model, curated dataset is available at https://huggingface.co/purbeshmitra/semantic-soft-bootstrapping.
Outcome-based Reinforcement Learning to Predict the Future
Reinforcement Learning with Verifiable Rewards (RLVR) has been an effective approach for improving Large Language Models' reasoning in domains such as coding and mathematics. Here, we apply RLVR methods towards forecasting future real-world events - a challenging task for RL due to the very noisy (and delayed) outcomes involved. Using a novel dataset of recent questions from a prediction market, and accompanying relevant news headlines, we show that a compact (14B) reasoning model can be trained to match or surpass the predictive accuracy of frontier models like o1, while greatly improving probabilistic calibration. The model's performance is also practically meaningful: in a Polymarket trading simulation, we estimate that its bets would have yielded a return on investment of over 10% across all questions in the test set. We detail and compare approaches used in training our model, including augmenting our training-data with synthetic prediction questions, guardrails for learning stability, and median prediction sampling at inference-time.
No Prompt Left Behind: Exploiting Zero-Variance Prompts in LLM Reinforcement Learning via Entropy-Guided Advantage Shaping
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful framework for improving the reasoning abilities of Large Language Models (LLMs). However, current methods such as GRPO rely only on problems where the model responses to the same input differ in correctness, while ignoring those where all responses receive the same reward - so-called zero-variance prompts. In this work, we argue that such prompts are not useless but can, in fact, provide meaningful feedback for policy optimization. To this end, we introduce RL with Zero-Variance Prompts (RL-ZVP), a novel algorithm that extract learning signals from zero-variance prompts. RL-ZVP directly rewards correctness and penalizes errors even without contrasting responses, modulating feedback with token-level characteristics to preserve informative, nuanced signals. Across six math reasoning benchmarks, RL-ZVP achieves significant improvements of up to 8.61 points in accuracy and 7.77 points in pass rate over GRPO, while consistently outperforming other baselines that filter out zero-variance prompts. These results highlight the untapped potential of learning from zero-variance prompts in RLVR.
Selective Expert Guidance for Effective and Diverse Exploration in Reinforcement Learning of LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) has become a widely adopted technique for enhancing the reasoning ability of Large Language Models (LLMs). However, the effectiveness of RLVR strongly depends on the capability of base models. This issue arises because it requires the model to have sufficient capability to perform high-quality exploration, which involves both effectiveness and diversity. Unfortunately, existing methods address this issue by imitating expert trajectories, which improve effectiveness but neglect diversity. To address this, we argue that the expert only needs to provide guidance only at critical decision points rather than the entire reasoning path. Based on this insight, we propose MENTOR: Mixed-policy Expert Navigation for Token-level Optimization of Reasoning, a framework that provides expert guidance only at critical decision points to perform effective and diverse exploration in RLVR. Extensive experiments show that MENTOR enables models capture the essence of expert strategies rather than surface imitation, thereby performing high-quality exploration and achieving superior overall performance. Our code is available online.
Agent-RLVR: Training Software Engineering Agents via Guidance and Environment Rewards
Reinforcement Learning from Verifiable Rewards (RLVR) has been widely adopted as the de facto method for enhancing the reasoning capabilities of large language models and has demonstrated notable success in verifiable domains like math and competitive programming tasks. However, the efficacy of RLVR diminishes significantly when applied to agentic environments. These settings, characterized by multi-step, complex problem solving, lead to high failure rates even for frontier LLMs, as the reward landscape is too sparse for effective model training via conventional RLVR. In this work, we introduce Agent-RLVR, a framework that makes RLVR effective in challenging agentic settings, with an initial focus on software engineering tasks. Inspired by human pedagogy, Agent-RLVR introduces agent guidance, a mechanism that actively steers the agent towards successful trajectories by leveraging diverse informational cues. These cues, ranging from high-level strategic plans to dynamic feedback on the agent's errors and environmental interactions, emulate a teacher's guidance, enabling the agent to navigate difficult solution spaces and promotes active self-improvement via additional environment exploration. In the Agent-RLVR training loop, agents first attempt to solve tasks to produce initial trajectories, which are then validated by unit tests and supplemented with agent guidance. Agents then reattempt with guidance, and the agent policy is updated with RLVR based on the rewards of these guided trajectories. Agent-RLVR elevates the pass@1 performance of Qwen-2.5-72B-Instruct from 9.4% to 22.4% on SWE-Bench Verified. We find that our guidance-augmented RLVR data is additionally useful for test-time reward model training, shown by further boosting pass@1 to 27.8%. Agent-RLVR lays the groundwork for training agents with RLVR in complex, real-world environments where conventional RL methods struggle.
F-GRPO: Don't Let Your Policy Learn the Obvious and Forget the Rare
Reinforcement Learning with Verifiable Rewards (RLVR) is commonly based on group sampling to estimate advantages and stabilize policy updates. In practice, large group sizes are not feasible due to computational limits, which biases learning toward trajectories that are already likely. Smaller groups often miss rare-correct trajectories while still containing mixed rewards, concentrating probability on common solutions. We derive the probability that updates miss rare-correct modes as a function of group size, showing non-monotonic behavior, and characterize how updates redistribute mass within the correct set, revealing that unsampled-correct mass can shrink even as total correct mass grows. Motivated by this analysis, we propose a difficulty-aware advantage scaling coefficient, inspired by Focal loss, that down-weights updates on high-success prompts. The lightweight modification can be directly integrated into any group-relative RLVR algorithm such as GRPO, DAPO, and CISPO. On Qwen2.5-7B across in-domain and out-of-domain benchmarks, our method improves pass@256 from 64.1 rightarrow 70.3 (GRPO), 69.3 rightarrow 72.5 (DAPO), and 73.2 rightarrow 76.8 (CISPO), while preserving or improving pass@1, without increasing group size or computational cost.
RoRecomp: Enhancing Reasoning Efficiency via Rollout Response Recomposition in Reinforcement Learning
Reinforcement learning with verifiable rewards (RLVR) has proven effective in eliciting complex reasoning in large language models (LLMs). However, standard RLVR training often leads to excessively verbose processes (in reasoning tasks) and inefficient exploration trajectories (in agentic settings), as outcome-only rewards provide no incentive for efficiency and the high variance in response length within relatively small rollout groups results in noisy optimization signals. To address this, we propose Rollout Response Recomposition (RoRecomp), a plug-and-play method that guides models toward concise reasoning by strategically recomposing the training data. RoRecomp separates responses into two distinct batch types: 1) priority batches, which combine short-correct and long-incorrect responses selected from online batches to provide a clear gradient signal for brevity, and 2) compensation batches, which utilize remaining responses from a replay buffer to maintain stability and prevent model collapse. To comprehensively evaluate effectiveness, we test RoRecomp across three settings where results demonstrate substantial efficiency gains: reducing reasoning length by 27.7% in zero RL training, reducing unnecessary tool calls by 46.8% while improving accuracy in agentic RL, and achieving up to 52.5% length reduction in thinking compression, all with minimal performance impact.
Evaluating Parameter Efficient Methods for RLVR
We systematically evaluate Parameter-Efficient Fine-Tuning (PEFT) methods under the paradigm of Reinforcement Learning with Verifiable Rewards (RLVR). RLVR incentivizes language models to enhance their reasoning capabilities through verifiable feedback; however, while methods like LoRA are commonly used, the optimal PEFT architecture for RLVR remains unidentified. In this work, we conduct the first comprehensive evaluation of over 12 PEFT methodologies across the DeepSeek-R1-Distill families on mathematical reasoning benchmarks. Our empirical results challenge the default adoption of standard LoRA with three main findings. First, we demonstrate that structural variants, such as DoRA, AdaLoRA, and MiSS, consistently outperform LoRA. Second, we uncover a spectral collapse phenomenon in SVD-informed initialization strategies (e.g., PiSSA, MiLoRA), attributing their failure to a fundamental misalignment between principal-component updates and RL optimization. Furthermore, our ablations reveal that extreme parameter reduction (e.g., VeRA, Rank-1) severely bottlenecks reasoning capacity. We further conduct ablation studies and scaling experiments to validate our findings. This work provides a definitive guide for advocating for more exploration for parameter-efficient RL methods.
DRIVE: Data Curation Best Practices for Reinforcement Learning with Verifiable Reward in Competitive Code Generation
Recent reasoning-first models (e.g., OpenAI o1, DeepSeek R1) have spurred a resurgence of interest in RLVR. Nevertheless, advances are dominated by mathematics (e.g., AIME), with competitive-programming code generation underexplored and data curation receiving less attention than RL algorithm design. We investigate how to construct RLVR datasets (i.e., RL prompts) and present practical training techniques that yield strong performance on competitive-programming code generation. Our pipeline begins with supervised fine-tuning (SFT) distilled from strong open-source models, augmented with general-purpose and reasoning-intensive data. RL then follows a two-stage process with executable, testcase-driven rewards: first, training on a large, uniformly distributed set of competitive-programming problems using Group Relative Policy Optimization (GRPO) with 8 rollouts per prompt and a relatively short response-generation window (e.g., 32k during SFT and 24k in this stage) to expand entropy and mitigate repetition and truncation; second, we perform Pre-GRPO: updating on a small, high-quality set of challenging problems with a large rollout budget (64 rollouts per prompt) under a hard-focus curriculum that continuously retains the most difficult instances throughout training. We implement our method on Qwen2.5-32B and evaluate on LeetCode and Codeforces weekly contests to avoid data leakage. The resulting model achieves state-of-the-art performance among models of similar scale and is comparable to leading systems such as DeepSeek v3.1 and Doubao-1.5-Thinking. We also examine scaling trends and observe strong RL scaling on an internal large-scale MoE model. Our study distills concise best practices for data curation, entropy expansion, and curriculum design in RLVR for competitive-programming code generation.
Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@k metric with large values of k to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does not, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of k (\eg, k=1), base models can achieve a comparable or even higher pass@k score compared to their RL counterparts at large k values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: https://limit-of-RLVR.github.io
RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization
Reinforcement Learning with Verifiable Reward (RLVR) has significantly advanced the complex reasoning abilities of Large Language Models (LLMs). However, it struggles to break through the inherent capability boundaries of the base LLM, due to its essentially on-policy strategy coupled with LLM's immense action space and sparse reward. Critically, RLVR can lead to the capability boundary collapse, narrowing the LLM's problem-solving scope. To address this problem, we propose RL-PLUS, a novel hybrid-policy optimization approach for LLMs that synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models. RL-PLUS integrates two core components, i.e., Multiple Importance Sampling to address distributional mismatch from external data, and Exploration-Based Advantage Function to guide the model towards high-value, unexplored reasoning paths. We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach. Compared with existing RLVR methods, RL-PLUS achieves 1) state-of-the-art performance on six math reasoning benchmarks; 2) superior performance on six out-of-distribution reasoning tasks; 3) consistent and significant gains across diverse model families, with average relative improvements up to 69.2\%. Moreover, the analysis of Pass@k curves indicates that RL-PLUS effectively resolves the capability boundary collapse problem.
CURE: Critical-Token-Guided Re-Concatenation for Entropy-Collapse Prevention
Recent advances in Reinforcement Learning with Verified Reward (RLVR) have driven the emergence of more sophisticated cognitive behaviors in large language models (LLMs), thereby enhancing their reasoning capabilities. However, in prior RLVR pipelines, the repeated use of static initial-state sampling drawn exactly from the dataset distribution during each sampling phase produced overly deterministic, low diversity model behavior, which manifested as rapid entropy collapse and hindered sustained performance gains during prolonged training. To address this issue, we introduce CURE (Critical-token-gUided Re concatenation for Entropy-collapse prevention), a two-stage framework that balances exploration and exploitation. Specifically, in the first stage, to deliberately steer the model toward novel yet coherent contexts, we re-generate at high-entropy critical tokens and jointly optimize the original and the branched trajectories. The further comparison with vanilla DAPO shows that the regeneration process achieves a better performance on math reasoning tasks while sustaining a high-level entropy degree for exploration. In the second stage, we continue training with static initial-state sampling by DAPO, intentionally placing the model in a familiar state to gradually strengthen exploitation. Extensive experiments on Qwen-2.5-Math-7B show that, compared to other RLVR methods, CURE achieves a 5% performance gain across six math benchmarks, establishing state-of-the-art performance in both entropy and accuracy. A series of experiments further validate the effectiveness of our approach. Code is available at https://github.com/bytedance/CURE.
Masked-and-Reordered Self-Supervision for Reinforcement Learning from Verifiable Rewards
Test-time scaling has been shown to substantially improve large language models' (LLMs) mathematical reasoning. However, for a large portion of mathematical corpora, especially theorem proving, RLVR's scalability is limited: intermediate reasoning is crucial, while final answers are difficult to directly and reliably verify. Meanwhile, token-level SFT often degenerates into rote memorization rather than inducing longer chains of thought. Inspired by BERT's self-supervised tasks, we propose MR-RLVR (Masked-and-Reordered RLVR), which constructs process-level self-supervised rewards via "masked-then-fill" and "step reordering" to extract learnable signals from intermediate reasoning. Our training pipeline comprises two stages: we first perform self-supervised training on sampled mathematical calculation and proof data; we then conduct RLVR fine-tuning on mathematical calculation datasets where only outcomes are verifiable. We implement MR-RLVR on Qwen2.5-3B and DeepSeek-R1-Distill-Qwen-1.5B, and evaluate on AIME24, AIME25, AMC23, and MATH500. Under a fixed sampling and decoding budget, MR-RLVR achieves average relative gains over the original RLVR of +9.86% Pass@1, +5.27% Pass@5, and +4.00% Pass@8. These results indicate that incorporating process-aware self-supervised signals can effectively enhance RLVR's scalability and performance in only outcome-verifiable settings.
ExGRPO: Learning to Reason from Experience
Reinforcement learning from verifiable rewards (RLVR) is an emerging paradigm for improving the reasoning ability of large language models. However, standard on-policy training discards rollout experiences after a single update, leading to computational inefficiency and instability. While prior work on RL has highlighted the benefits of reusing past experience, the role of experience characteristics in shaping learning dynamics of large reasoning models remains underexplored. In this paper, we are the first to investigate what makes a reasoning experience valuable and identify rollout correctness and entropy as effective indicators of experience value. Based on these insights, we propose ExGRPO (Experiential Group Relative Policy Optimization), a framework that organizes and prioritizes valuable experiences, and employs a mixed-policy objective to balance exploration with experience exploitation. Experiments on five backbone models (1.5B-8B parameters) show that ExGRPO consistently improves reasoning performance on mathematical/general benchmarks, with an average gain of +3.5/7.6 points over on-policy RLVR. Moreover, ExGRPO stabilizes training on both stronger and weaker models where on-policy methods fail. These results highlight principled experience management as a key ingredient for efficient and scalable RLVR.
Not All Steps are Informative: On the Linearity of LLMs' RLVR Training
Reinforcement learning with verifiable rewards (RLVR) has become a central component of large language model (LLM) post-training. Unlike supervised fine-tuning (SFT), RLVR lets an LLM generate multiple candidate solutions and reinforces those that lead to a verifiably correct final answer. However, in practice, RLVR often requires thousands of training steps to reach strong performance, incurring substantial computation largely attributed to prolonged exploration. In this work, we make a surprising observation: during RLVR, LLMs evolve in a strongly linear manner. Specifically, both model weights and model output log-probabilities exhibit strong linear correlations with RL training steps. This suggests that RLVR predominantly amplifies trends that emerge early in training, rather than continuously discovering new behaviors throughout the entire optimization trajectory. Motivated by this linearity, we investigate whether future model states can be predicted from intermediate checkpoints via extrapolation, avoiding continued expensive training. We show that Weight Extrapolation produces models with performance comparable to standard RL training while requiring significantly less computation. Moreover, Logits Extrapolation consistently outperforms continued RL training on all four benchmarks by extrapolating beyond the step range where RL training remains stable.
Let it Calm: Exploratory Annealed Decoding for Verifiable Reinforcement Learning
Reinforcement learning with verifiable rewards (RLVR) is a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs), yet its success hinges on effective exploration. An ideal exploration strategy must navigate two fundamental challenges: it must preserve sample quality while also ensuring training stability. While standard fixed-temperature sampling is simple, it struggles to balance these competing demands, as high temperatures degrade sample quality and low temperatures limit discovery. In this work, we propose a simpler and more effective strategy, Exploratory Annealed Decoding (EAD), grounded in the insight that exploration is most impactful on early tokens which define a sequence's semantic direction. EAD implements an intuitive **explore-at-the-beginning, exploit-at-the-end** strategy by annealing the sampling temperature from high to low during generation. This dynamic schedule encourages meaningful, high-level diversity at the start, then gradually lowers the temperature to preserve sample quality and keep the sampling distribution close to the target policy, which is essential for stable training. We demonstrate that EAD is a lightweight, plug-and-play method that significantly improves sample efficiency, consistently outperforming fixed-temperature sampling across various RLVR algorithms and model sizes. Our work suggests that aligning exploration with the natural dynamics of sequential generation offers a robust path to improving LLM reasoning.
RIFT: Closed-Loop RL Fine-Tuning for Realistic and Controllable Traffic Simulation
Achieving both realism and controllability in interactive closed-loop traffic simulation remains a key challenge in autonomous driving. Data-driven simulation methods reproduce realistic trajectories but suffer from covariate shift in closed-loop deployment, compounded by simplified dynamics models that further reduce reliability. Conversely, physics-based simulation methods enhance reliable and controllable closed-loop interactions but often lack expert demonstrations, compromising realism. To address these challenges, we introduce a dual-stage AV-centered simulation framework that conducts open-loop imitation learning pre-training in a data-driven simulator to capture trajectory-level realism and multimodality, followed by closed-loop reinforcement learning fine-tuning in a physics-based simulator to enhance controllability and mitigate covariate shift. In the fine-tuning stage, we propose RIFT, a simple yet effective closed-loop RL fine-tuning strategy that preserves the trajectory-level multimodality through a GRPO-style group-relative advantage formulation, while enhancing controllability and training stability by replacing KL regularization with the dual-clip mechanism. Extensive experiments demonstrate that RIFT significantly improves the realism and controllability of generated traffic scenarios, providing a robust platform for evaluating autonomous vehicle performance in diverse and interactive scenarios.
Beyond Reasoning Gains: Mitigating General Capabilities Forgetting in Large Reasoning Models
Reinforcement learning with verifiable rewards (RLVR) has delivered impressive gains in mathematical and multimodal reasoning and has become a standard post-training paradigm for contemporary language and vision-language models. However, the RLVR recipe introduces a significant risk of capability regression, where models forget foundational skills after prolonged training without employing regularization strategies. We empirically confirm this concern, observing that open-source reasoning models suffer performance degradation on core capabilities such as perception and faithfulness. While imposing regularization terms like KL divergence can help prevent deviation from the base model, these terms are calculated on the current task, thus they do not guarantee broader knowledge. Meanwhile, commonly used experience replay across heterogeneous domains makes it nontrivial to decide how much training focus each objective should receive. To address this, we propose RECAP-a replay strategy with dynamic objective reweighting for general knowledge preservation. Our reweighting mechanism adapts in an online manner using short-horizon signals of convergence and instability, shifting the post-training focus away from saturated objectives and toward underperforming or volatile ones. Our method is end-to-end and readily applicable to existing RLVR pipelines without training additional models or heavy tuning. Extensive experiments on benchmarks based on Qwen2.5-VL-3B and Qwen2.5-VL-7B demonstrate the effectiveness of our method, which not only preserves general capabilities but also improves reasoning by enabling more flexible trade-offs among in-task rewards.
Reinforcement Learning with Rubric Anchors
Reinforcement Learning from Verifiable Rewards (RLVR) has emerged as a powerful paradigm for enhancing Large Language Models (LLMs), exemplified by the success of OpenAI's o-series. In RLVR, rewards are derived from verifiable signals-such as passing unit tests in code generation or matching correct answers in mathematical reasoning. While effective, this requirement largely confines RLVR to domains with automatically checkable outcomes. To overcome this, we extend the RLVR paradigm to open-ended tasks by integrating rubric-based rewards, where carefully designed rubrics serve as structured, model-interpretable criteria for automatic scoring of subjective outputs. We construct, to our knowledge, the largest rubric reward system to date, with over 10,000 rubrics from humans, LLMs, or a hybrid human-LLM collaboration. Implementing rubric-based RL is challenging; we tackle these issues with a clear framework and present an open-sourced Qwen-30B-A3B model with notable gains: 1) With only 5K+ samples, our system improves by +5.2% on open-ended benchmarks (especially humanities), outperforming a 671B DeepSeek-V3 model by +2.4%, while preserving general and reasoning abilities. 2) Our method provides fine-grained stylistic control, using rubrics as anchors to mitigate the "AI-like" tone and produce more human-like, expressive responses. We share key lessons in rubric construction, data selection, and training, and discuss limitations and future releases.
From Trial-and-Error to Improvement: A Systematic Analysis of LLM Exploration Mechanisms in RLVR
Reinforcement learning with verifiable rewards (RLVR) has emerged as a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs). Unlike traditional RL approaches, RLVR leverages rule-based feedback to guide LLMs in generating and refining complex reasoning chains -- a process critically dependent on effective exploration strategies. While prior work has demonstrated RLVR's empirical success, the fundamental mechanisms governing LLMs' exploration behaviors remain underexplored. This technical report presents a systematic investigation of exploration capacities in RLVR, covering four main aspects: (1) exploration space shaping, where we develop quantitative metrics to characterize LLMs' capability boundaries; (2) entropy-performance exchange, analyzed across training stages, individual instances, and token-level patterns; and (3) RL performance optimization, examining methods to effectively translate exploration gains into measurable improvements. By unifying previously identified insights with new empirical evidence, this work aims to provide a foundational framework for advancing RLVR systems.
Perception-Aware Policy Optimization for Multimodal Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be a highly effective strategy for endowing Large Language Models (LLMs) with robust multi-step reasoning abilities. However, its design and optimizations remain tailored to purely textual domains, resulting in suboptimal performance when applied to multimodal reasoning tasks. In particular, we observe that a major source of error in current multimodal reasoning lies in the perception of visual inputs. To address this bottleneck, we propose Perception-Aware Policy Optimization (PAPO), a simple yet effective extension of GRPO that encourages the model to learn to perceive while learning to reason, entirely from internal supervision signals. Notably, PAPO does not rely on additional data curation, external reward models, or proprietary models. Specifically, we introduce the Implicit Perception Loss in the form of a KL divergence term to the GRPO objective, which, despite its simplicity, yields significant overall improvements (4.4%) on diverse multimodal benchmarks. The improvements are more pronounced, approaching 8.0%, on tasks with high vision dependency. We also observe a substantial reduction (30.5%) in perception errors, indicating improved perceptual capabilities with PAPO. We conduct comprehensive analysis of PAPO and identify a unique loss hacking issue, which we rigorously analyze and mitigate through a Double Entropy Loss. Overall, our work introduces a deeper integration of perception-aware supervision into RLVR learning objectives and lays the groundwork for a new RL framework that encourages visually grounded reasoning. Project page: https://mikewangwzhl.github.io/PAPO.
Language Models that Think, Chat Better
Reinforcement learning with verifiable rewards (RLVR) improves language model reasoning by using rule-based rewards in verifiable domains such as mathematics and code. However, RLVR leads to limited generalization for open-ended tasks -- such as writing outline essays or making meal plans -- where humans reason routinely. This paper shows that the RLVR paradigm is effective beyond verifiable domains, and introduces **RL** with **M**odel-rewarded **T**hinking (**RLMT**) for general-purpose chat capabilities. Using diverse real-world prompts, RLMT requires LMs to generate long CoT reasoning before response, and optimizes them with online RL against a preference-based reward model used in RLHF. Across 40 training runs on Llama-3.1-8B and Qwen-2.5-7B (both base and instruct) and multiple optimization algorithms (DPO, PPO, and GRPO), RLMT consistently outperforms standard RLHF pipelines. This includes substantial gains of 3-7 points on three chat benchmarks (AlpacaEval2, WildBench, and ArenaHardV2), along with 1-3 point improvements on other tasks like creative writing and general knowledge. Our best 8B model surpasses GPT-4o in chat and creative writing and rivals Claude-3.7-Sonnet (Thinking). RLMT can also be applied directly to base models without an SFT stage, akin to R1-Zero training. Remarkably, with only 7K prompts, Llama-3.1-8B base trained with our RLMT recipe outperforms Llama-3.1-8B-Instruct post-trained with a complex multi-staged pipeline with 25M+ examples. We close with qualitative and quantitative analyses of how trained models plan their responses. Our results rethink the post-training pipeline and call upon future work to understand and employ thinking more broadly.
Reinforcement Learning for Reasoning in Large Language Models with One Training Example
We show that reinforcement learning with verifiable reward using one training example (1-shot RLVR) is effective in incentivizing the math reasoning capabilities of large language models (LLMs). Applying RLVR to the base model Qwen2.5-Math-1.5B, we identify a single example that elevates model performance on MATH500 from 36.0% to 73.6%, and improves the average performance across six common mathematical reasoning benchmarks from 17.6% to 35.7%. This result matches the performance obtained using the 1.2k DeepScaleR subset (MATH500: 73.6%, average: 35.9%), which includes the aforementioned example. Similar substantial improvements are observed across various models (Qwen2.5-Math-7B, Llama3.2-3B-Instruct, DeepSeek-R1-Distill-Qwen-1.5B), RL algorithms (GRPO and PPO), and different math examples (many of which yield approximately 30% or greater improvement on MATH500 when employed as a single training example). In addition, we identify some interesting phenomena during 1-shot RLVR, including cross-domain generalization, increased frequency of self-reflection, and sustained test performance improvement even after the training accuracy has saturated, a phenomenon we term post-saturation generalization. Moreover, we verify that the effectiveness of 1-shot RLVR primarily arises from the policy gradient loss, distinguishing it from the "grokking" phenomenon. We also show the critical role of promoting exploration (e.g., by adding entropy loss with an appropriate coefficient) in 1-shot RLVR training. As a bonus, we observe that applying entropy loss alone, without any outcome reward, significantly enhances Qwen2.5-Math-1.5B's performance on MATH500 by 27.4%. These findings can inspire future work on RLVR data efficiency and encourage a re-examination of both recent progress and the underlying mechanisms in RLVR. Our code, model, and data are open source at https://github.com/ypwang61/One-Shot-RLVR
RLBFF: Binary Flexible Feedback to bridge between Human Feedback & Verifiable Rewards
Reinforcement Learning with Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) are the main RL paradigms used in LLM post-training, each offering distinct advantages. However, RLHF struggles with interpretability and reward hacking because it relies on human judgments that usually lack explicit criteria, whereas RLVR is limited in scope by its focus on correctness-based verifiers. We propose Reinforcement Learning with Binary Flexible Feedback (RLBFF), which combines the versatility of human-driven preferences with the precision of rule-based verification, enabling reward models to capture nuanced aspects of response quality beyond mere correctness. RLBFF extracts principles that can be answered in a binary fashion (e.g. accuracy of information: yes, or code readability: no) from natural language feedback. Such principles can then be used to ground Reward Model training as an entailment task (response satisfies or does not satisfy an arbitrary principle). We show that Reward Models trained in this manner can outperform Bradley-Terry models when matched for data and achieve top performance on RM-Bench (86.2%) and JudgeBench (81.4%, #1 on leaderboard as of September 24, 2025). Additionally, users can specify principles of interest at inference time to customize the focus of our reward models, in contrast to Bradley-Terry models. Finally, we present a fully open source recipe (including data) to align Qwen3-32B using RLBFF and our Reward Model, to match or exceed the performance of o3-mini and DeepSeek R1 on general alignment benchmarks of MT-Bench, WildBench, and Arena Hard v2 (at <5% of the inference cost).
Beyond Correctness: Harmonizing Process and Outcome Rewards through RL Training
Reinforcement learning with verifiable rewards (RLVR) has emerged to be a predominant paradigm for mathematical reasoning tasks, offering stable improvements in reasoning ability. However, Outcome Reward Models (ORMs) in RLVR are too coarse-grained to distinguish flawed reasoning within correct answers or valid reasoning within incorrect answers. This lack of granularity introduces noisy and misleading gradients significantly and hinders further progress in reasoning process quality. While Process Reward Models (PRMs) offer fine-grained guidance for intermediate steps, they frequently suffer from inaccuracies and are susceptible to reward hacking. To resolve this dilemma, we introduce PRocess cOnsistency Filter (PROF), an effective data process curation method that harmonizes noisy, fine-grained process rewards with accurate, coarse-grained outcome rewards. Rather than naively blending PRM and ORM in the objective function (arXiv:archive/2506.18896), PROF leverages their complementary strengths through consistency-driven sample selection. Our approach retains correct responses with higher averaged process values and incorrect responses with lower averaged process values, while maintaining positive/negative training sample balance. Extensive experiments demonstrate that our method not only consistently improves the final accuracy over 4% compared to the blending approaches, but also strengthens the quality of intermediate reasoning steps. Codes and training recipes are available at https://github.com/Chenluye99/PROF.
R-Horizon: How Far Can Your Large Reasoning Model Really Go in Breadth and Depth?
Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek-R1) have led to remarkable improvements through long Chain-of-Thought (CoT). However, existing benchmarks mainly focus on immediate, single-horizon tasks, failing to adequately evaluate models' ability to understand and respond to complex, long-horizon scenarios. To address this incomplete evaluation of Large Reasoning Models (LRMs), we propose R-HORIZON, a method designed to stimulate long-horizon reasoning behaviors in LRMs through query composition. Based on R-HORIZON, we construct a long-horizon reasoning benchmark, comprising complex multi-step reasoning tasks with interdependent problems that span long reasoning horizons. Through comprehensive evaluation of LRMs using the R-HORIZON benchmark, we find that even the most advanced LRMs suffer significant performance degradation. Our analysis reveals that LRMs exhibit limited effective reasoning length and struggle to allocate thinking budget across multiple problems appropriately. Recognizing these limitations, we use R-HORIZON to construct long-horizon reasoning data for reinforcement learning with verified rewards (RLVR). Compared to training with single-horizon data, RLVR with R-HORIZON not only substantially improves performance on the multi-horizon reasoning tasks, but also promotes accuracy on standard reasoning tasks, with an increase of 7.5 on AIME2024. These results position R-HORIZON as a scalable, controllable, and low-cost paradigm for enhancing and evaluating the long-horizon reasoning capabilities of LRMs.
BroRL: Scaling Reinforcement Learning via Broadened Exploration
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key ingredient for unlocking complex reasoning capabilities in large language models. Recent work ProRL has shown promise in scaling RL by increasing the number of training steps. However, performance plateaus after thousands of steps, with clear diminishing returns from allocating more computation to additional training. In this work, we investigate a complementary paradigm for scaling RL, BroR-Lincreasing the number of rollouts per example to hundreds to exhaustively Broaden exploration, which yields continuous performance gains beyond the saturation point observed in ProRL when scaling the number of training steps. Our approach is motivated by a mass balance equation analysis allowing us to characterize the rate of change in probability mass for correct and incorrect tokens during the reinforcement process. We show that under a one-step RL assumption, sampled rollout tokens always contribute to correct-mass expansion, while unsampled tokens outside rollouts may lead to gains or losses depending on their distribution and the net reward balance. Importantly, as the number of rollouts per example N increases, the effect of unsampled terms diminishes, ensuring overall correct-mass expansion. To validate our theoretical analysis, we conduct simulations under more relaxed conditions and find that a sufficiently large rollout size N-corresponding to ample exploration-guarantees an increase in the probability mass of all correct tokens. Empirically, BroRL revives models saturated after 3K ProRL training steps and demonstrates robust, continuous improvement, achieving state-of-the-art results for the 1.5B model across diverse benchmarks.
Explore Data Left Behind in Reinforcement Learning for Reasoning Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an effective approach for improving the reasoning abilities of large language models (LLMs). The Group Relative Policy Optimization (GRPO) family has demonstrated strong performance in training LLMs with RLVR. However, as models train longer and scale larger, more training prompts become residual prompts, those with zero variance rewards that provide no training signal. Consequently, fewer prompts contribute to training, reducing diversity and hindering effectiveness. To fully exploit these residual prompts, we propose the Explore Residual Prompts in Policy Optimization (ERPO) framework, which encourages exploration on residual prompts and reactivates their training signals. ERPO maintains a history tracker for each prompt and adaptively increases the sampling temperature for residual prompts that previously produced all correct responses. This encourages the model to generate more diverse reasoning traces, introducing incorrect responses that revive training signals. Empirical results on the Qwen2.5 series demonstrate that ERPO consistently surpasses strong baselines across multiple mathematical reasoning benchmarks.
Staying in the Sweet Spot: Responsive Reasoning Evolution via Capability-Adaptive Hint Scaffolding
Reinforcement learning with verifiable rewards (RLVR) has achieved remarkable success in enhancing the reasoning capabilities of large language models (LLMs). However, existing RLVR methods often suffer from exploration inefficiency due to mismatches between the training data's difficulty and the model's capability. LLMs fail to discover viable reasoning paths when problems are overly difficult, while learning little new capability when problems are too simple. In this work, we formalize the impact of problem difficulty by quantifying the relationship between loss descent speed and rollout accuracy. Building on this analysis, we propose SEELE, a novel supervision-aided RLVR framework that dynamically adjusts problem difficulty to stay within the high-efficiency region. SEELE augments each training sample by appending a hint (part of a full solution) after the original problem. Unlike previous hint-based approaches, SEELE deliberately and adaptively adjusts the hint length for each problem to achieve an optimal difficulty. To determine the optimal hint length, SEELE employs a multi-round rollout sampling strategy. In each round, it fits an item response theory model to the accuracy-hint pairs collected in preceding rounds to predict the required hint length for the next round. This instance-level, real-time difficulty adjustment aligns problem difficulty with the evolving model capability, thereby improving exploration efficiency. Experimental results show that SEELE outperforms Group Relative Policy Optimization (GRPO) and Supervised Fine-tuning (SFT) by +11.8 and +10.5 points, respectively, and surpasses the best previous supervision-aided approach by +3.6 points on average across six math reasoning benchmarks.
VideoSSR: Video Self-Supervised Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) has substantially advanced the video understanding capabilities of Multimodal Large Language Models (MLLMs). However, the rapid progress of MLLMs is outpacing the complexity of existing video datasets, while the manual annotation of new, high-quality data remains prohibitively expensive. This work investigates a pivotal question: Can the rich, intrinsic information within videos be harnessed to self-generate high-quality, verifiable training data? To investigate this, we introduce three self-supervised pretext tasks: Anomaly Grounding, Object Counting, and Temporal Jigsaw. We construct the Video Intrinsic Understanding Benchmark (VIUBench) to validate their difficulty, revealing that current state-of-the-art MLLMs struggle significantly on these tasks. Building upon these pretext tasks, we develop the VideoSSR-30K dataset and propose VideoSSR, a novel video self-supervised reinforcement learning framework for RLVR. Extensive experiments across 17 benchmarks, spanning four major video domains (General Video QA, Long Video QA, Temporal Grounding, and Complex Reasoning), demonstrate that VideoSSR consistently enhances model performance, yielding an average improvement of over 5\%. These results establish VideoSSR as a potent foundational framework for developing more advanced video understanding in MLLMs. The code is available at https://github.com/lcqysl/VideoSSR.
MEML-GRPO: Heterogeneous Multi-Expert Mutual Learning for RLVR Advancement
Recent advances demonstrate that reinforcement learning with verifiable rewards (RLVR) significantly enhances the reasoning capabilities of large language models (LLMs). However, standard RLVR faces challenges with reward sparsity, where zero rewards from consistently incorrect candidate answers provide no learning signal, particularly in challenging tasks. To address this, we propose Multi-Expert Mutual Learning GRPO (MEML-GRPO), an innovative framework that utilizes diverse expert prompts as system prompts to generate a broader range of responses, substantially increasing the likelihood of identifying correct solutions. Additionally, we introduce an inter-expert mutual learning mechanism that facilitates knowledge sharing and transfer among experts, further boosting the model's performance through RLVR. Extensive experiments across multiple reasoning benchmarks show that MEML-GRPO delivers significant improvements, achieving an average performance gain of 4.89% with Qwen and 11.33% with Llama, effectively overcoming the core limitations of traditional RLVR methods.
Warm Up Before You Train: Unlocking General Reasoning in Resource-Constrained Settings
Designing effective reasoning-capable LLMs typically requires training using Reinforcement Learning with Verifiable Rewards (RLVR) or distillation with carefully curated Long Chain of Thoughts (CoT), both of which depend heavily on extensive training data. This creates a major challenge when the amount of quality training data is scarce. We propose a sample-efficient, two-stage training strategy to develop reasoning LLMs under limited supervision. In the first stage, we "warm up" the model by distilling Long CoTs from a toy domain, namely, Knights \& Knaves (K\&K) logic puzzles to acquire general reasoning skills. In the second stage, we apply RLVR to the warmed-up model using a limited set of target-domain examples. Our experiments demonstrate that this two-phase approach offers several benefits: (i) the warmup phase alone facilitates generalized reasoning, leading to performance improvements across a range of tasks, including MATH, HumanEval^{+}, and MMLU-Pro. (ii) When both the base model and the warmed-up model are RLVR trained on the same small dataset (leq100 examples), the warmed-up model consistently outperforms the base model; (iii) Warming up before RLVR training allows a model to maintain cross-domain generalizability even after training on a specific domain; (iv) Introducing warmup in the pipeline improves not only accuracy but also overall sample efficiency during RLVR training. The results in this paper highlight the promise of warmup for building robust reasoning LLMs in data-scarce environments.
Beyond Pass@1: Self-Play with Variational Problem Synthesis Sustains RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a key paradigm for post-training Large Language Models (LLMs), particularly for complex reasoning tasks. However, vanilla RLVR training has been shown to improve Pass@1 performance at the expense of policy entropy, leading to reduced generation diversity and limiting the Pass@k performance, which typically represents the upper bound of LLM reasoning capability. In this paper, we systematically analyze the policy's generation diversity from the perspective of training problems and find that augmenting and updating training problems helps mitigate entropy collapse during training. Based on these observations, we propose an online Self-play with Variational problem Synthesis (SvS) strategy for RLVR training, which uses the policy's correct solutions to synthesize variational problems while ensuring their reference answers remain identical to the originals. This self-improving strategy effectively maintains policy entropy during training and substantially improves Pass@k compared with standard RLVR, sustaining prolonged improvements and achieving absolute gains of 18.3% and 22.8% in Pass@32 performance on the competition-level AIME24 and AIME25 benchmarks. Experiments on 12 reasoning benchmarks across varying model sizes from 3B to 32B consistently demonstrate the generalizability and robustness of SvS.
RL-100: Performant Robotic Manipulation with Real-World Reinforcement Learning
Real-world robotic manipulation in homes and factories demands reliability, efficiency, and robustness that approach or surpass skilled human operators. We present RL-100, a real-world reinforcement learning training framework built on diffusion visuomotor policies trained bu supervised learning. RL-100 introduces a three-stage pipeline. First, imitation learning leverages human priors. Second, iterative offline reinforcement learning uses an Offline Policy Evaluation procedure, abbreviated OPE, to gate PPO-style updates that are applied in the denoising process for conservative and reliable improvement. Third, online reinforcement learning eliminates residual failure modes. An additional lightweight consistency distillation head compresses the multi-step sampling process in diffusion into a single-step policy, enabling high-frequency control with an order-of-magnitude reduction in latency while preserving task performance. The framework is task-, embodiment-, and representation-agnostic and supports both 3D point clouds and 2D RGB inputs, a variety of robot platforms, and both single-step and action-chunk policies. We evaluate RL-100 on seven real-robot tasks spanning dynamic rigid-body control, such as Push-T and Agile Bowling, fluids and granular pouring, deformable cloth folding, precise dexterous unscrewing, and multi-stage orange juicing. RL-100 attains 100\% success across evaluated trials for a total of 900 out of 900 episodes, including up to 250 out of 250 consecutive trials on one task. The method achieves near-human teleoperation or better time efficiency and demonstrates multi-hour robustness with uninterrupted operation lasting up to two hours.
Position: The Hidden Costs and Measurement Gaps of Reinforcement Learning with Verifiable Rewards
Reinforcement learning with verifiable rewards (RLVR) is a practical and scalable approach to enhancing large language models in areas such as math, code, and other structured tasks. Two questions motivate this paper: how much of the reported gains survive under strictly parity-controlled evaluation, and whether RLVR is cost-free or exacts a measurable tax. We argue that progress is real, but gains are often overstated due to three forces - an RLVR tax, evaluation pitfalls, and data contamination. Using a partial-prompt contamination audit and matched-budget reproductions across base and RL models, we show that several headline gaps shrink or vanish under clean, parity-controlled evaluation. We then propose a tax-aware training and evaluation protocol that co-optimizes accuracy, grounding, and calibrated abstention and standardizes budgeting and provenance checks. Applied to recent RLVR setups, this protocol yields more reliable estimates of reasoning gains and, in several cases, revises prior conclusions. Our position is constructive: RLVR is valuable and industry-ready; we advocate keeping its practical benefits while prioritizing reliability, safety, and measurement.
Adaptive Guidance Accelerates Reinforcement Learning of Reasoning Models
We study the process through which reasoning models trained with reinforcement learning on verifiable rewards (RLVR) can learn to solve new problems. We find that RLVR drives performance in two main ways: (1) by compressing pass@k into pass@1 and (2) via "capability gain" in which models learn to solve new problems that they previously could not solve even at high k. We find that while capability gain exists across model scales, learning to solve new problems is primarily driven through self-distillation. We demonstrate these findings across model scales ranging from 0.5B to 72B parameters on >500,000 reasoning problems with prompts and verifiable final answers across math, science, and code domains. We further show that we can significantly improve pass@k rates by leveraging natural language guidance for the model to consider within context while still requiring the model to derive a solution chain from scratch. Based of these insights, we derive Guide -- a new class of online training algorithms. Guide adaptively incorporates hints into the model's context on problems for which all rollouts were initially incorrect and adjusts the importance sampling ratio for the "off-policy" trajectories in order to optimize the policy for contexts in which the hints are no longer present. We describe variants of Guide for GRPO and PPO and empirically show that Guide-GRPO on 7B and 32B parameter models improves generalization over its vanilla counterpart with up to 4% macro-average improvement across math benchmarks. We include careful ablations to analyze Guide's components and theoretically analyze Guide's learning efficiency.
Generalizable Geometric Image Caption Synthesis
Multimodal large language models have various practical applications that demand strong reasoning abilities. Despite recent advancements, these models still struggle to solve complex geometric problems. A key challenge stems from the lack of high-quality image-text pair datasets for understanding geometric images. Furthermore, most template-based data synthesis pipelines typically fail to generalize to questions beyond their predefined templates. In this paper, we bridge this gap by introducing a complementary process of Reinforcement Learning with Verifiable Rewards (RLVR) into the data generation pipeline. By adopting RLVR to refine captions for geometric images synthesized from 50 basic geometric relations and using reward signals derived from mathematical problem-solving tasks, our pipeline successfully captures the key features of geometry problem-solving. This enables better task generalization and yields non-trivial improvements. Furthermore, even in out-of-distribution scenarios, the generated dataset enhances the general reasoning capabilities of multimodal large language models, yielding accuracy improvements of 2.8%-4.8% in statistics, arithmetic, algebraic, and numerical tasks with non-geometric input images of MathVista and MathVerse, along with 2.4%-3.9% improvements in Art, Design, Tech, and Engineering tasks in MMMU.
Med-RLVR: Emerging Medical Reasoning from a 3B base model via reinforcement Learning
Reinforcement learning from verifiable rewards (RLVR) has recently gained attention for its ability to elicit self-evolved reasoning capabilitie from base language models without explicit reasoning supervisions, as demonstrated by DeepSeek-R1. While prior work on RLVR has primarily focused on mathematical and coding domains, its applicability to other tasks and domains remains unexplored. In this work, we investigate whether medical reasoning can emerge from RLVR. We introduce Med-RLVR as an initial study of RLVR in the medical domain leveraging medical multiple-choice question answering (MCQA) data as verifiable labels. Our results demonstrate that RLVR is not only effective for math and coding but also extends successfully to medical question answering. Notably, Med-RLVR achieves performance comparable to traditional supervised fine-tuning (SFT) on in-distribution tasks while significantly improving out-of-distribution generalization, with an 8-point accuracy gain. Further analysis of training dynamics reveals that, with no explicit reasoning supervision, reasoning emerges from the 3B-parameter base model. These findings underscore the potential of RLVR in domains beyond math and coding, opening new avenues for its application in knowledge-intensive fields such as medicine.
JudgeRLVR: Judge First, Generate Second for Efficient Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has become a standard paradigm for reasoning in Large Language Models. However, optimizing solely for final-answer correctness often drives models into aimless, verbose exploration, where they rely on exhaustive trial-and-error tactics rather than structured planning to reach solutions. While heuristic constraints like length penalties can reduce verbosity, they often truncate essential reasoning steps, creating a difficult trade-off between efficiency and verification. In this paper, we argue that discriminative capability is a prerequisite for efficient generation: by learning to distinguish valid solutions, a model can internalize a guidance signal that prunes the search space. We propose JudgeRLVR, a two-stage judge-then-generate paradigm. In the first stage, we train the model to judge solution responses with verifiable answers. In the second stage, we fine-tune the same model with vanilla generating RLVR initialized from the judge. Compared to Vanilla RLVR using the same math-domain training data, JudgeRLVR achieves a better quality--efficiency trade-off for Qwen3-30B-A3B: on in-domain math, it delivers about +3.7 points average accuracy gain with -42\% average generation length; on out-of-domain benchmarks, it delivers about +4.5 points average accuracy improvement, demonstrating enhanced generalization.
Search Self-play: Pushing the Frontier of Agent Capability without Supervision
Reinforcement learning with verifiable rewards (RLVR) has become the mainstream technique for training LLM agents. However, RLVR highly depends on well-crafted task queries and corresponding ground-truth answers to provide accurate rewards, which requires massive human efforts and hinders the RL scaling processes, especially under agentic scenarios. Although a few recent works explore task synthesis methods, the difficulty of generated agentic tasks can hardly be controlled to provide effective RL training advantages. To achieve agentic RLVR with higher scalability, we explore self-play training for deep search agents, in which the learning LLM utilizes multi-turn search engine calling and acts simultaneously as both a task proposer and a problem solver. The task proposer aims to generate deep search queries with well-defined ground-truth answers and increasing task difficulty. The problem solver tries to handle the generated search queries and output the correct answer predictions. To ensure that each generated search query has accurate ground truth, we collect all the searching results from the proposer's trajectory as external knowledge, then conduct retrieval-augmentation generation (RAG) to test whether the proposed query can be correctly answered with all necessary search documents provided. In this search self-play (SSP) game, the proposer and the solver co-evolve their agent capabilities through both competition and cooperation. With substantial experimental results, we find that SSP can significantly improve search agents' performance uniformly on various benchmarks without any supervision under both from-scratch and continuous RL training setups. The code is at https://github.com/Alibaba-Quark/SSP.
Random Policy Valuation is Enough for LLM Reasoning with Verifiable Rewards
RL with Verifiable Rewards (RLVR) has emerged as a promising paradigm for improving the reasoning abilities of large language models (LLMs). Current methods rely primarily on policy optimization frameworks like PPO and GRPO, which follow generalized policy iteration that alternates between evaluating the current policy's value and improving the policy based on evaluation. While effective, they often suffer from training instability and diversity collapse, requiring complex heuristic tricks and careful tuning. We observe that standard RLVR in math reasoning can be formalized as a specialized finite-horizon Markov Decision Process with deterministic state transitions, tree-structured dynamics, and binary terminal rewards. Though large in scale, the underlying structure is simpler than general-purpose control settings for which popular RL algorithms (e.g., PPO) were developed, suggesting that several sophisticated techniques in existing methods may be reduced or even omitted. Based on this insight, we prove a surprising result: the optimal action can be recovered from the Q-function of a fixed uniformly random policy, thereby bypassing the generalized policy iteration loop and its associated heuristics. We introduce Random Policy Valuation for Diverse Reasoning (ROVER) to translate this principle into a practical and scalable algorithm for LLM math reasoning, a minimalist yet highly effective RL method that samples actions from a softmax over these uniform-policy Q-values. ROVER preserves diversity throughout training, allowing sustained exploration of multiple valid pathways. Across multiple base models and standard math reasoning benchmarks, ROVER demonstrates superior performance in both quality (+8.2 on pass@1, +16.8 on pass@256) and diversity (+17.6\%), despite its radical simplification compared to strong, complicated existing methods.
CoBA-RL: Capability-Oriented Budget Allocation for Reinforcement Learning in LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key approach for enhancing LLM reasoning.However, standard frameworks like Group Relative Policy Optimization (GRPO) typically employ a uniform rollout budget, leading to resource inefficiency. Moreover, existing adaptive methods often rely on instance-level metrics, such as task pass rates, failing to capture the model's dynamic learning state. To address these limitations, we propose CoBA-RL, a reinforcement learning algorithm designed to adaptively allocate rollout budgets based on the model's evolving capability. Specifically, CoBA-RL utilizes a Capability-Oriented Value function to map tasks to their potential training gains and employs a heap-based greedy strategy to efficiently self-calibrate the distribution of computational resources to samples with high training value. Extensive experiments demonstrate that our approach effectively orchestrates the trade-off between exploration and exploitation, delivering consistent generalization improvements across multiple challenging benchmarks. These findings underscore that quantifying sample training value and optimizing budget allocation are pivotal for advancing LLM post-training efficiency.
Generalization of RLVR Using Causal Reasoning as a Testbed
Reinforcement learning with verifiable rewards (RLVR) has emerged as a promising paradigm for post-training large language models (LLMs) on complex reasoning tasks. Yet, the conditions under which RLVR yields robust generalization remain poorly understood. This paper provides an empirical study of RLVR generalization in the setting of probabilistic inference over causal graphical models. This setting offers two natural axes along which to examine generalization: (i) the level of the probabilistic query -- associational, interventional, or counterfactual -- and (ii) the structural complexity of the query, measured by the size of its relevant subgraph. We construct datasets of causal graphs and queries spanning these difficulty axes and fine-tune Qwen-2.5-Instruct models using RLVR or supervised fine-tuning (SFT). We vary both the model scale (3B-32B) and the query level included in training. We find that RLVR yields stronger within-level and across-level generalization than SFT, but only for specific combinations of model size and training query level. Further analysis shows that RLVR's effectiveness depends on the model's initial reasoning competence. With sufficient initial competence, RLVR improves an LLM's marginalization strategy and reduces errors in intermediate probability calculations, producing substantial accuracy gains, particularly on more complex queries. These findings show that RLVR can improve specific causal reasoning subskills, with its benefits emerging only when the model has sufficient initial competence.
EEPO: Exploration-Enhanced Policy Optimization via Sample-Then-Forget
Balancing exploration and exploitation remains a central challenge in reinforcement learning with verifiable rewards (RLVR) for large language models (LLMs). Current RLVR methods often overemphasize exploitation, leading to entropy collapse, diminished exploratory capacity, and ultimately limited performance gains. Although techniques that increase policy stochasticity can promote exploration, they frequently fail to escape dominant behavioral modes. This creates a self-reinforcing loop-repeatedly sampling and rewarding dominant modes-that further erodes exploration. We introduce Exploration-Enhanced Policy Optimization (EEPO), a framework that promotes exploration via two-stage rollouts with adaptive unlearning. In the first stage, the model generates half of the trajectories; it then undergoes a lightweight unlearning step to temporarily suppress these sampled responses, forcing the second stage to explore different regions of the output space. This sample-then-forget mechanism disrupts the self-reinforcing loop and promotes wider exploration during rollouts. Across five reasoning benchmarks, EEPO outperforms GRPO, achieving average relative gains of 24.3% on Qwen2.5-3B, 33.0% on Llama3.2-3B-Instruct, and 10.4% on Qwen3-8B-Base.
Improving Sampling Efficiency in RLVR through Adaptive Rollout and Response Reuse
Large language models (LLMs) have achieved impressive reasoning performance, with reinforcement learning with verifiable rewards (RLVR) emerging as a standard paradigm for post-training. A representative algorithm, group relative policy optimization (GRPO) (Shao et al., 2024), computes advantages by normalizing outcome rewards within response groups, but suffers from a vanishing advantage issue when all responses in a group receive identical rewards. To address this issue, we propose Adaptive Rollout and Response Reuse Policy Optimization (AR3PO), a sampling efficient RLVR algorithm that introduces two novel techniques: adaptive rollout, which dynamically allocates more responses to difficult prompts while saving computation on easier ones, and response reuse, which leverages previously generated correct responses to provide useful training signals. We compare AR3PO with strong RLVR baselines on multiple representative benchmarks using two different families of base models. Across the 7B and 8B models, AR3PO consistently outperforms GRPO and matches or surpasses DAPO (Yu et al., 2025), reducing rollout cost by up to 4.2x. On the larger 32B model, AR3PO achieves comparable performance to DAPO at similar training steps while maintaining substantially lower rollout cost.
The Surprising Effectiveness of Negative Reinforcement in LLM Reasoning
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for training language models (LMs) on reasoning tasks that elicit emergent long chains of thought (CoTs). Unlike supervised learning, it updates the model using both correct and incorrect samples via policy gradients. To better understand its mechanism, we decompose the learning signal into reinforcing correct responses and penalizing incorrect ones, referred to as Positive and Negative Sample Reinforcement (PSR and NSR), respectively. We train Qwen2.5-Math-7B and Qwen3-4B on a mathematical reasoning dataset and uncover a surprising result: training with only negative samples -- without reinforcing correct responses -- can be highly effective: it consistently improves performance over the base model across the entire Pass@k spectrum (k up to 256), often matching or surpassing PPO and GRPO. In contrast, reinforcing only correct responses improves Pass@1 but degrades performance at higher k, due to reduced diversity. These inference-scaling trends highlight that solely penalizing incorrect responses may contribute more to performance than previously recognized. Through gradient analysis, we show that NSR works by suppressing incorrect generations and redistributing probability mass toward other plausible candidates, guided by the model's prior beliefs. It refines the model's existing knowledge rather than introducing entirely new behaviors. Building on this insight, we propose a simple variant of the RL objective that upweights NSR, and show that it consistently improves overall Pass@k performance on MATH, AIME 2025, and AMC23. Our code is available at https://github.com/TianHongZXY/RLVR-Decomposed.
ViSurf: Visual Supervised-and-Reinforcement Fine-Tuning for Large Vision-and-Language Models
Typical post-training paradigms for Large Vision-and-Language Models (LVLMs) include Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Rewards (RLVR). SFT leverages external guidance to inject new knowledge, whereas RLVR utilizes internal reinforcement to enhance reasoning capabilities and overall performance. However, our analysis reveals that SFT often leads to sub-optimal performance, while RLVR struggles with tasks that exceed the model's internal knowledge base. To address these limitations, we propose ViSurf (Visual Supervised-and-Reinforcement Fine-Tuning), a unified post-training paradigm that integrates the strengths of both SFT and RLVR within a single stage. We analyze the derivation of the SFT and RLVR objectives to establish the ViSurf objective, providing a unified perspective on these two paradigms. The core of ViSurf involves injecting ground-truth labels into the RLVR rollouts, thereby providing simultaneous external supervision and internal reinforcement. Furthermore, we introduce three novel reward control strategies to stabilize and optimize the training process. Extensive experiments across several diverse benchmarks demonstrate the effectiveness of ViSurf, outperforming both individual SFT, RLVR, and two-stage SFT \textrightarrow RLVR. In-depth analysis corroborates these findings, validating the derivation and design principles of ViSurf.
Shorter but not Worse: Frugal Reasoning via Easy Samples as Length Regularizers in Math RLVR
Large language models (LLMs) trained for step-by-step reasoning often become excessively verbose, raising inference cost. Standard Reinforcement Learning with Verifiable Rewards (RLVR) pipelines filter out ``easy'' problems for training efficiency, leaving the model to train primarily on harder problems that require longer reasoning chains. This skews the output length distribution upward, resulting in a model that conflates ``thinking longer'' with ``thinking better''. In this work, we show that retaining and modestly up-weighting moderately easy problems acts as an implicit length regularizer. Exposing the model to solvable short-chain tasks constrains its output distribution and prevents runaway verbosity. The result is \emph{emergent brevity for free}: the model learns to solve harder problems without inflating the output length, despite the absence of any explicit length penalization. RLVR experiments using this approach on Qwen3-4B-Thinking-2507 (with a 16k token limit) achieve baseline pass@1 AIME25 accuracy while generating solutions that are, on average, nearly twice as short. The code is available at https://github.com/MBZUAI-Paris/Frugal-AI{GitHub}, with datasets and models on https://huggingface.co/collections/MBZUAI-Paris/k2-think-mini-68dcfa8b114686a4bd3dc2bc{Hugging Face}.
Adaptive Ability Decomposing for Unlocking Large Reasoning Model Effective Reinforcement Learning
Reinforcement learning with verifiable rewards (RLVR) has shown great potential to enhance the reasoning ability of large language models (LLMs). However, due to the limited amount of information provided during the RLVR process, the model can only engage in largely blind exploration, which often results in failure on challenging problems. To provide additional information for the RLVR process without relying on a teacher model, we propose A^2D, an Adaptive Ability Decomposing method for enhancing the effectiveness of RLVR. Specifically, we first train a decomposer via RLVR without distillation, enabling it to decompose complex questions into a set of simpler sub-questions. Next, we use this decomposer to annotate sub-questions for each question in the training dataset, and then train the reasoner under RLVR with sub-question guidance. To better understand A^2D, we first compare its performance with competitive baselines, showing its effectiveness. Next, we observe that our method functions as a plug-and-play module that can be applied to different RLVR algorithms. Furthermore, we conduct an analysis of the decomposer, revealing how the RLVR process affects its performance and behavior, and which type of guidance is better suited for enhancing the reasoner's exploration and exploitation abilities.
Learning to Fly in Seconds
Learning-based methods, particularly Reinforcement Learning (RL), hold great promise for streamlining deployment, enhancing performance, and achieving generalization in the control of autonomous multirotor aerial vehicles. Deep RL has been able to control complex systems with impressive fidelity and agility in simulation but the simulation-to-reality transfer often brings a hard-to-bridge reality gap. Moreover, RL is commonly plagued by prohibitively long training times. In this work, we propose a novel asymmetric actor-critic-based architecture coupled with a highly reliable RL-based training paradigm for end-to-end quadrotor control. We show how curriculum learning and a highly optimized simulator enhance sample complexity and lead to fast training times. To precisely discuss the challenges related to low-level/end-to-end multirotor control, we also introduce a taxonomy that classifies the existing levels of control abstractions as well as non-linearities and domain parameters. Our framework enables Simulation-to-Reality (Sim2Real) transfer for direct RPM control after only 18 seconds of training on a consumer-grade laptop as well as its deployment on microcontrollers to control a multirotor under real-time guarantees. Finally, our solution exhibits competitive performance in trajectory tracking, as demonstrated through various experimental comparisons with existing state-of-the-art control solutions using a real Crazyflie nano quadrotor. We open source the code including a very fast multirotor dynamics simulator that can simulate about 5 months of flight per second on a laptop GPU. The fast training times and deployment to a cheap, off-the-shelf quadrotor lower the barriers to entry and help democratize the research and development of these systems.
GHPO: Adaptive Guidance for Stable and Efficient LLM Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for facilitating the self-improvement of large language models (LLMs), particularly in the domain of complex reasoning tasks. However, prevailing on-policy RL methods often contend with significant training instability and inefficiency. This is primarily due to a capacity-difficulty mismatch, where the complexity of training data frequently outpaces the model's current capabilities, leading to critically sparse reward signals and stalled learning progress. This challenge is particularly acute for smaller, more resource-efficient LLMs. To overcome this, we introduce the Guided Hybrid Policy Optimization (GHPO), a novel difficulty-aware reinforcement learning framework. GHPO dynamically calibrates task difficulty by employing adaptive prompt refinement to provide targeted guidance. This unique approach adaptively balances direct imitation learning for problems currently beyond the model's reach with exploration-based reinforcement learning for more manageable tasks, effectively creating a smooth and optimized learning curriculum. Extensive experiments demonstrate that GHPO achieves an average performance gain of approximately 5% across six challenging mathematics benchmarks, consistently outperforming strong on-policy reinforcement learning and curriculum learning baselines. Further analysis confirms that our framework significantly enhances both training stability and final reasoning performance, thus offering a scalable and efficient solution for developing powerful and robust reasoning models.
ReWatch-R1: Boosting Complex Video Reasoning in Large Vision-Language Models through Agentic Data Synthesis
While Reinforcement Learning with Verifiable Reward (RLVR) significantly advances image reasoning in Large Vision-Language Models (LVLMs), its application to complex video reasoning remains underdeveloped. This gap stems primarily from a critical data bottleneck: existing datasets lack the challenging, multi-hop questions and high-quality, video-grounded Chain-of-Thought (CoT) data necessary to effectively bootstrap RLVR. To address this, we introduce ReWatch, a large-scale dataset built to foster advanced video reasoning. We propose a novel multi-stage synthesis pipeline to synthesize its three components: ReWatch-Caption, ReWatch-QA, and ReWatch-CoT. A core innovation is our Multi-Agent ReAct framework for CoT synthesis, which simulates a human-like "re-watching" process to generate video-grounded reasoning traces by explicitly modeling information retrieval and verification. Building on this dataset, we develop ReWatch-R1 by post-training a strong baseline LVLM with Supervised Fine-Tuning (SFT) and our RLVR framework. This framework incorporates a novel Observation \& Reasoning (O\&R) reward mechanism that evaluates both the final answer's correctness and the reasoning's alignment with video content, directly penalizing hallucination. Our experiments show that ReWatch-R1 achieves state-of-the-art average performance on five challenging video reasoning benchmarks. Project Page: https://rewatch-r1.github.io
The Multiple Ticket Hypothesis: Random Sparse Subnetworks Suffice for RLVR
The Lottery Ticket Hypothesis demonstrated that sparse subnetworks can match full-model performance, suggesting parameter redundancy. Meanwhile, in Reinforcement Learning with Verifiable Rewards (RLVR), recent work has shown that updates concentrate on a sparse subset of parameters, which further lends evidence to this underlying redundancy. We study the simplest possible way to exploit this redundancy: training only a randomly selected subset of parameters at extreme sparsities. Empirically, we find that training just 1\% of parameters matches or exceeds full-parameter RLVR finetuning across 3 models and 2 task domains. Moreover, different random masks show minimal overlap (leq 0.005 Jaccard similarity) and yet all succeed, suggesting pretrained models contain many viable sparse subnetworks rather than one privileged set. We term this the Multiple Ticket Hypothesis. We explain this phenomenon through the implicit per-step KL constraint in RLVR, which restricts updates to a low-dimensional subspace, enabling arbitrary sparse masks to succeed.
CodeV-R1: Reasoning-Enhanced Verilog Generation
Large language models (LLMs) trained via reinforcement learning with verifiable reward (RLVR) have achieved breakthroughs on tasks with explicit, automatable verification, such as software programming and mathematical problems. Extending RLVR to electronic design automation (EDA), especially automatically generating hardware description languages (HDLs) like Verilog from natural-language (NL) specifications, however, poses three key challenges: the lack of automated and accurate verification environments, the scarcity of high-quality NL-code pairs, and the prohibitive computation cost of RLVR. To this end, we introduce CodeV-R1, an RLVR framework for training Verilog generation LLMs. First, we develop a rule-based testbench generator that performs robust equivalence checking against golden references. Second, we propose a round-trip data synthesis method that pairs open-source Verilog snippets with LLM-generated NL descriptions, verifies code-NL-code consistency via the generated testbench, and filters out inequivalent examples to yield a high-quality dataset. Third, we employ a two-stage "distill-then-RL" training pipeline: distillation for the cold start of reasoning abilities, followed by adaptive DAPO, our novel RLVR algorithm that can reduce training cost by adaptively adjusting sampling rate. The resulting model, CodeV-R1-7B, achieves 68.6% and 72.9% pass@1 on VerilogEval v2 and RTLLM v1.1, respectively, surpassing prior state-of-the-art by 12~20%, while matching or even exceeding the performance of 671B DeepSeek-R1. We will release our model, training pipeline, and dataset to facilitate research in EDA and LLM communities.
Can One Domain Help Others? A Data-Centric Study on Multi-Domain Reasoning via Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful paradigm for enhancing the reasoning capabilities of LLMs. Existing research has predominantly concentrated on isolated reasoning domains such as mathematical problem-solving, coding tasks, or logical reasoning. However, real world reasoning scenarios inherently demand an integrated application of multiple cognitive skills. Despite this, the interplay among these reasoning skills under reinforcement learning remains poorly understood. To bridge this gap, we present a systematic investigation of multi-domain reasoning within the RLVR framework, explicitly focusing on three primary domains: mathematical reasoning, code generation, and logical puzzle solving. We conduct a comprehensive study comprising four key components: (1) Leveraging the GRPO algorithm and the Qwen-2.5-7B model family, our study thoroughly evaluates the models' in-domain improvements and cross-domain generalization capabilities when trained on single-domain datasets. (2) Additionally, we examine the intricate interactions including mutual enhancements and conflicts that emerge during combined cross-domain training. (3) To further understand the influence of SFT on RL, we also analyze and compare performance differences between base and instruct models under identical RL configurations. (4) Furthermore, we delve into critical RL training details, systematically exploring the impacts of curriculum learning strategies, variations in reward design, and language-specific factors. Through extensive experiments, our results offer significant insights into the dynamics governing domain interactions, revealing key factors influencing both specialized and generalizable reasoning performance. These findings provide valuable guidance for optimizing RL methodologies to foster comprehensive, multi-domain reasoning capabilities in LLMs.
GTR-Turbo: Merged Checkpoint is Secretly a Free Teacher for Agentic VLM Training
Multi-turn reinforcement learning (RL) for multi-modal agents built upon vision-language models (VLMs) is hampered by sparse rewards and long-horizon credit assignment. Recent methods densify the reward by querying a teacher that provides step-level feedback, e.g., Guided Thought Reinforcement (GTR) and On-Policy Distillation, but rely on costly, often privileged models as the teacher, limiting practicality and reproducibility. We introduce GTR-Turbo, a highly efficient upgrade to GTR, which matches the performance without training or querying an expensive teacher model. Specifically, GTR-Turbo merges the weights of checkpoints produced during the ongoing RL training, and then uses this merged model as a "free" teacher to guide the subsequent RL via supervised fine-tuning or soft logit distillation. This design removes dependence on privileged VLMs (e.g., GPT or Gemini), mitigates the "entropy collapse" observed in prior work, and keeps training stable. Across diverse visual agentic tasks, GTR-Turbo improves the accuracy of the baseline model by 10-30% while reducing wall-clock training time by 50% and compute cost by 60% relative to GTR.
Spurious Rewards Paradox: Mechanistically Understanding How RLVR Activates Memorization Shortcuts in LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) is highly effective for enhancing LLM reasoning, yet recent evidence shows models like Qwen 2.5 achieve significant gains even with spurious or incorrect rewards. We investigate this phenomenon and identify a "Perplexity Paradox": spurious RLVR triggers a divergence where answer-token perplexity drops while prompt-side coherence degrades, suggesting the model is bypassing reasoning in favor of memorization. Using Path Patching, Logit Lens, JSD analysis, and Neural Differential Equations, we uncover a hidden Anchor-Adapter circuit that facilitates this shortcut. We localize a Functional Anchor in the middle layers (L18-20) that triggers the retrieval of memorized solutions, followed by Structural Adapters in later layers (L21+) that transform representations to accommodate the shortcut signal. Finally, we demonstrate that scaling specific MLP keys within this circuit allows for bidirectional causal steering-artificially amplifying or suppressing contamination-driven performance. Our results provide a mechanistic roadmap for identifying and mitigating data contamination in RLVR-tuned models. Code is available at https://github.com/idwts/How-RLVR-Activates-Memorization-Shortcuts.
Reinforced Efficient Reasoning via Semantically Diverse Exploration
Reinforcement learning with verifiable rewards (RLVR) has proven effective in enhancing the reasoning of large language models (LLMs). Monte Carlo Tree Search (MCTS)-based extensions improve upon vanilla RLVR (e.g., GRPO) by providing tree-based reasoning rollouts that enable fine-grained and segment-level credit assignment. However, existing methods still suffer from limited exploration diversity and inefficient reasoning. To address the above challenges, we propose reinforced efficient reasoning via semantically diverse explorations, i.e., ROSE, for LLMs. To encourage more diverse reasoning exploration, our method incorporates a semantic-entropy-based branching strategy and an varepsilon-exploration mechanism. The former operates on already sampled reasoning rollouts to capture semantic uncertainty and select branching points with high semantic divergence to generate new successive reasoning paths, whereas the latter stochastically initiates reasoning rollouts from the root, preventing the search process from becoming overly local. To improve efficiency, we design a length-aware segment-level advantage estimator that rewards concise and correct reasoning while penalizing unnecessarily long reasoning chains. Extensive experiments on various mathematical reasoning benchmarks with Qwen and Llama models validate the effectiveness and efficiency of ROSE. Codes are available at https://github.com/ZiqiZhao1/ROSE-rl.
Internalizing Meta-Experience into Memory for Guided Reinforcement Learning in Large Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an effective approach for enhancing the reasoning capabilities of Large Language Models (LLMs). Despite its efficacy, RLVR faces a meta-learning bottleneck: it lacks mechanisms for error attribution and experience internalization intrinsic to the human learning cycle beyond practice and verification, thereby limiting fine-grained credit assignment and reusable knowledge formation. We term such reusable knowledge representations derived from past errors as meta-experience. Based on this insight, we propose Meta-Experience Learning (MEL), a novel framework that incorporates self-distilled meta-experience into the model's parametric memory. Building upon standard RLVR, we introduce an additional design that leverages the LLM's self-verification capability to conduct contrastive analysis on paired correct and incorrect trajectories, identify the precise bifurcation points where reasoning errors arise, and summarize them into generalizable meta-experience. The meta-experience is further internalized into the LLM's parametric memory by minimizing the negative log-likelihood, which induces a language-modeled reward signal that bridges correct and incorrect reasoning trajectories and facilitates effective knowledge reuse. Experimental results demonstrate that MEL achieves consistent improvements on benchmarks, yielding 3.92%--4.73% Pass@1 gains across varying model sizes.
Stabilizing Knowledge, Promoting Reasoning: Dual-Token Constraints for RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) has become an effective post-training method for improving the reasoning abilities of Large Language Models (LLMs), mainly by shaping higher-order behaviors such as reflection and planning. However, previous RLVR algorithms often apply uniform training signals to all tokens, without considering the different roles of low-entropy knowledge-related tokens and high-entropy reasoning-related tokens. Some recent methods try to separate these token types by gradient masking or asynchronous updates, but these approaches may break semantic dependencies in the model output and hinder effective learning. In this work, we propose Archer, an entropy-aware RLVR approach with dual-token constraints and synchronous updates. Specifically, our method applies weaker KL regularization and higher clipping thresholds to reasoning tokens to encourage exploration, while using stronger constraints on knowledge tokens to maintain factual knowledge. Experimental results on several mathematical reasoning and code generation benchmarks show that our approach significantly outperforms previous RLVR methods, reaching or exceeding state-of-the-art performance among models of comparable size. The code is available at https://github.com/wizard-III/ArcherCodeR.
M2-Reasoning: Empowering MLLMs with Unified General and Spatial Reasoning
Recent advancements in Multimodal Large Language Models (MLLMs), particularly through Reinforcement Learning with Verifiable Rewards (RLVR), have significantly enhanced their reasoning abilities. However, a critical gap persists: these models struggle with dynamic spatial interactions, a capability essential for real-world applications. To bridge this gap, we introduce M2-Reasoning-7B, a model designed to excel in both general and spatial reasoning. Our approach integrates two key innovations: (1) a novel data pipeline that generates 294.2K high-quality data samples (168K for cold-start fine-tuning and 126.2K for RLVR), which feature logically coherent reasoning trajectories and have undergone comprehensive assessment; and (2) a dynamic multi-task training strategy with step-wise optimization to mitigate conflicts between data, and task-specific rewards for delivering tailored incentive signals. This combination of curated data and advanced training allows M2-Reasoning-7B to set a new state-of-the-art (SOTA) across 8 benchmarks, showcasing superior performance in both general and spatial reasoning domains.
More Than the Final Answer: Improving Visual Extraction and Logical Consistency in Vision-Language Models
Reinforcement learning from verifiable rewards (RLVR) has recently been extended from text-only LLMs to vision-language models (VLMs) to elicit long-chain multimodal reasoning. However, RLVR-trained VLMs still exhibit two persistent failure modes: inaccurate visual extraction (missing or hallucinating details) and logically inconsistent chains-of-thought, largely because verifiable signals supervise only the final answer. We propose PeRL-VL (Perception and Reasoning Learning for Vision-Language Models), a decoupled framework that separately improves visual perception and textual reasoning on top of RLVR. For perception, PeRL-VL introduces a VLM-based description reward that scores the model's self-generated image descriptions for faithfulness and sufficiency. For reasoning, PeRL-VL adds a text-only Reasoning SFT stage on logic-rich chain-of-thought data, enhancing coherence and logical consistency independently of vision. Across diverse multimodal benchmarks, PeRL-VL improves average Pass@1 accuracy from 63.3% (base Qwen2.5-VL-7B) to 68.8%, outperforming standard RLVR, text-only reasoning SFT, and naive multimodal distillation from GPT-4o.
SPEC-RL: Accelerating On-Policy Reinforcement Learning via Speculative Rollouts
Large Language Models (LLMs) increasingly rely on reinforcement learning with verifiable rewards (RLVR) to elicit reliable chain-of-thought reasoning. However, the training process remains bottlenecked by the computationally expensive rollout stage. Existing acceleration methods-such as parallelization, objective- and data-driven modifications, and replay buffers-either incur diminishing returns, introduce bias, or overlook redundancy across iterations. We identify that rollouts from consecutive training epochs frequently share a large portion of overlapping segments, wasting computation. To address this, we propose SPEC-RL, a novel framework that integrates SPECulative decoding with the RL rollout process. SPEC-RL reuses prior trajectory segments as speculative prefixes and extends them via a draft-and-verify mechanism, avoiding redundant generation while ensuring policy consistency. Experiments on diverse math reasoning and generalization benchmarks, including GSM8K, MATH-500, OlympiadBench, MMLU-STEM, and others, demonstrate that SPEC-RL reduces rollout time by 2-3x without compromising policy quality. As a purely rollout-stage enhancement, SPEC-RL integrates seamlessly with mainstream algorithms (e.g., PPO, GRPO, DAPO), offering a general and practical path to scale RLVR for large reasoning models. Our code is available at https://github.com/ShopeeLLM/Spec-RL
Less Noise, More Voice: Reinforcement Learning for Reasoning via Instruction Purification
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced LLM reasoning, but remains constrained by inefficient exploration under limited rollout budgets, leading to low sampling success and unstable training in complex tasks. We find that many exploration failures arise not from problem difficulty, but from a small number of prompt tokens that introduce interference. Building on this insight, we propose the Less Noise Sampling Framework (LENS), which first prompts by identifying and removing interference tokens. then transfers successful rollouts from the purification process to supervise policy optimization on the original noisy prompts, enabling the model to learn to ignore interference in the real-world, noisy prompting settings. Experimental results show that LENS significantly outperforms GRPO, delivering higher performance and faster convergence, with a 3.88% average gain and over 1.6times speedup. Our work highlights the critical role of pruning interference tokens in improving rollout efficiency, offering a new perspective for RLVR research.
OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF Framework
Large Language Models (LLMs) fine-tuned via Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) significantly improve the alignment of human-AI values and further raise the upper bound of AI capabilities, particularly in reasoning-intensive, long-context Chain-of-Thought (long-CoT) tasks. However, existing RLHF (or RLVR) frameworks commonly face challenges such as inference bottlenecks and complexity barriers, restricting their accessibility for newcomers. To bridge this gap, we introduce OpenRLHF, a user-friendly, scalable, and easy-to-learn open-source RLHF framework built upon Ray, vLLM, DeepSpeed, and HuggingFace Transformers, featuring a simplified design, clear code structure, and comprehensive documentation to facilitate entry for researchers and practitioners. Experimental results show that OpenRLHF achieves superior training efficiency with speedups ranging from 1.22x to 1.68x across different model sizes compared to state-of-the-art frameworks, while requiring significantly fewer lines of code for implementation. OpenRLHF is publicly available at https://github.com/OpenRLHF/OpenRLHF, and has already been adopted by leading institutions to accelerate RLHF research and learning.
Beyond the Exploration-Exploitation Trade-off: A Hidden State Approach for LLM Reasoning in RLVR
A prevailing view in Reinforcement Learning for Verifiable Rewards (RLVR) interprets recent progress through the lens of an exploration-exploitation trade-off, a perspective largely shaped by token-level metrics. We re-examine this perspective, proposing that this perceived trade-off may not be a fundamental constraint but rather an artifact of the measurement level. To investigate this, we shift the analysis to the semantically rich hidden-state space, adopting Effective Rank (ER) to quantify exploration and proposing its novel first- and second-order derivatives, named Effective Rank Velocity (ERV) and Effective Rank Acceleration (ERA), to capture exploitation dynamics. Our analysis reveals that at the hidden-state level, exploration and exploitation could be decoupled (Sec. 4). This finding reveals an opportunity to enhance both capacities simultaneously. This insight motivates our method, Velocity-Exploiting Rank-Learning (VERL), the first to operationalize the principle of synergistic exploration-exploitation enhancement by directly shaping the RL advantage function. The key innovation is leveraging the theoretically stable ERA as a predictive meta-controller to create a synergistic, dual-channel incentive structure. Instead of forcing a trade-off, VERL prospectively amplifies rewards for exploration to preempt overconfidence and reinforces exploitative gains to consolidate reasoning. Experiments across diverse LLMs and reasoning benchmarks show consistent gains, including up to 21.4% absolute accuracy improvement on the challenging Gaokao 2024 dataset.
G^2RPO-A: Guided Group Relative Policy Optimization with Adaptive Guidance
Reinforcement Learning with Verifiable Rewards (RLVR) has markedly enhanced the reasoning abilities of large language models (LLMs). Its success, however, largely depends on strong base models with rich world knowledge, yielding only modest improvements for small-size language models (SLMs). To address this limitation, we investigate Guided GRPO, which injects ground-truth reasoning steps into roll-out trajectories to compensate for SLMs' inherent weaknesses. Through a comprehensive study of various guidance configurations, we find that naively adding guidance delivers limited gains. These insights motivate G^2RPO-A, an adaptive algorithm that automatically adjusts guidance strength in response to the model's evolving training dynamics. Experiments on mathematical reasoning and code-generation benchmarks confirm that G^2RPO-A substantially outperforms vanilla GRPO. Our code and models are available at https://github.com/T-Lab-CUHKSZ/G2RPO-A.
Auditable-choice reframing unlocks RL-based verification for open-ended tasks
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated great potential in enhancing the reasoning capabilities of large language models (LLMs), achieving remarkable progress in domains such as mathematics and programming where standard answers are available. However, for open-ended tasks lacking ground-truth solutions (e.g., creative writing and instruction following), existing studies typically regard them as non-reasoning scenarios, thereby overlooking the latent value of reasoning capabilities. This raises a key question: Can strengthening reasoning improve performance in open-ended tasks? To address this, we explore the transfer of the RLVR paradigm to the open domain. Yet, since RLVR fundamentally relies on verifiers that presuppose the existence of standard answers, it cannot be directly applied to open-ended tasks. To overcome this challenge, we introduce Verifiable Multiple-Choice Reformulation (VMR), a novel training strategy that restructures open-ended data into verifiable multiple-choice formats, enabling effective training even in the absence of explicit ground truth. Experimental results on multiple benchmarks validate the effectiveness of our method in improving LLM performance on open-ended tasks. Notably, across eight open-ended benchmarks, our VMR-based training delivers an average gain of 5.99 points over the baseline. Code will be released upon acceptance to facilitate reproducibility.
CDE: Curiosity-Driven Exploration for Efficient Reinforcement Learning in Large Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful paradigm for enhancing the reasoning ability of Large Language Models (LLMs). Yet current RLVR methods often explore poorly, leading to premature convergence and entropy collapse. To address this challenge, we introduce Curiosity-Driven Exploration (CDE), a framework that leverages the model's own intrinsic sense of curiosity to guide exploration. We formalize curiosity with signals from both the actor and the critic: for the actor, we use perplexity over its generated response, and for the critic, we use the variance of value estimates from a multi-head architecture. Both signals serve as an exploration bonus within the RLVR framework to guide the model. Our theoretical analysis shows that the actor-wise bonus inherently penalizes overconfident errors and promotes diversity among correct responses; moreover, we connect the critic-wise bonus to the well-established count-based exploration bonus in RL. Empirically, our method achieves an approximate +3 point improvement over standard RLVR using GRPO/PPO on AIME benchmarks. Further analysis identifies a calibration collapse mechanism within RLVR, shedding light on common LLM failure modes.
EvoCoT: Overcoming the Exploration Bottleneck in Reinforcement Learning
Reinforcement learning with verifiable reward (RLVR) has become a promising paradigm for post-training large language models (LLMs) to improve their reasoning capability. However, when the rollout accuracy is low on hard problems, the reward becomes sparse, limiting learning efficiency and causing exploration bottlenecks. Existing approaches either rely on teacher models for distillation or filter out difficult problems, which limits scalability or restricts reasoning improvement through exploration. We propose EvoCoT, a self-evolving curriculum learning framework based on two-stage chain-of-thought (CoT) reasoning optimization. EvoCoT constrains the exploration space by self-generating and verifying CoT trajectories, then gradually shortens CoT steps to expand the space in a controlled way. The framework enables LLMs to stably learn from initially unsolved hard problems under sparse rewards. We apply EvoCoT to multiple LLM families, including Qwen, DeepSeek, and Llama. Experiments show that EvoCoT enables LLMs to solve previously unsolved problems, improves reasoning capability without external CoT supervision, and is compatible with various RL fine-tuning methods. We release the source code to support future research.
Towards High Data Efficiency in Reinforcement Learning with Verifiable Reward
Recent advances in large reasoning models have leveraged reinforcement learning with verifiable rewards (RLVR) to improve reasoning capabilities. However, scaling these methods typically requires extensive rollout computation and large datasets, leading to high training costs and low data efficiency. To mitigate this issue, we propose DEPO, a Data-Efficient Policy Optimization pipeline that combines optimized strategies for both offline and online data selection. In the offline phase, we curate a high-quality subset of training samples based on diversity, influence, and appropriate difficulty. During online RLVR training, we introduce a sample-level explorability metric to dynamically filter samples with low exploration potential, thereby reducing substantial rollout computational costs. Furthermore, we incorporate a replay mechanism for under-explored samples to ensure adequate training, which enhances the model's final convergence performance. Experiments across five reasoning benchmarks show that DEPO consistently outperforms existing methods in both offline and online data selection scenarios. Notably, using only 20% of the training data, our approach achieves a 1.85 times speed-up on AIME24 and a 1.66 times speed-up on AIME25 compared to GRPO trained on the full dataset.
AgentRL: Scaling Agentic Reinforcement Learning with a Multi-Turn, Multi-Task Framework
Recent advances in large language models (LLMs) have sparked growing interest in building generalist agents that can learn through online interactions. However, applying reinforcement learning (RL) to train LLM agents in multi-turn, multi-task settings remains challenging due to lack of scalable infrastructure and stable training algorithms. In this work, we present the AgentRL framework for scalable multi-turn, multi-task agentic RL training. On the infrastructure side, AgentRL features a fully-asynchronous generation-training pipeline for efficient multi-turn RL. To support heterogeneous environment development in multi-task RL, we design a unified function-call based API interface, containerized environment development, and a centralized controller. On the algorithm side, we propose cross-policy sampling to encourage model exploration in multi-turn settings and task advantage normalization to stabilize multi-task training. Experiments show that AgentRL, trained on open LLMs across five agentic tasks, significantly outperforms GPT-5, Clause-Sonnet-4, DeepSeek-R1, and other open-source LLM agents. Multi-task training with AgentRL matches the best results among all task-specific models. AgentRL is open-sourced at https://github.com/THUDM/AgentRL. The algorithm and framework are adopted in building \href{https://autoglm.zhipuai.cn{AutoGLM}}.
Advancing Multimodal Reasoning Capabilities of Multimodal Large Language Models via Visual Perception Reward
Enhancing the multimodal reasoning capabilities of Multimodal Large Language Models (MLLMs) is a challenging task that has attracted increasing attention in the community. Recently, several studies have applied Reinforcement Learning with Verifiable Rewards (RLVR) to the multimodal domain in order to enhance the reasoning abilities of MLLMs. However, these works largely overlook the enhancement of multimodal perception capabilities in MLLMs, which serve as a core prerequisite and foundational component of complex multimodal reasoning. Through McNemar's test, we find that existing RLVR method fails to effectively enhance the multimodal perception capabilities of MLLMs, thereby limiting their further improvement in multimodal reasoning. To address this limitation, we propose Perception-R1, which introduces a novel visual perception reward that explicitly encourages MLLMs to perceive the visual content accurately, thereby can effectively incentivizing both their multimodal perception and reasoning capabilities. Specifically, we first collect textual visual annotations from the CoT trajectories of multimodal problems, which will serve as visual references for reward assignment. During RLVR training, we employ a judging LLM to assess the consistency between the visual annotations and the responses generated by MLLM, and assign the visual perception reward based on these consistency judgments. Extensive experiments on several multimodal reasoning benchmarks demonstrate the effectiveness of our Perception-R1, which achieves state-of-the-art performance on most benchmarks using only 1,442 training data.
MedVLThinker: Simple Baselines for Multimodal Medical Reasoning
Large Reasoning Models (LRMs) have introduced a new paradigm in AI by enabling models to ``think before responding" via chain-of-thought reasoning. However, the absence of open and reproducible recipes for building reasoning-centric medical LMMs hinders community-wide research, analysis, and comparison. In this paper, we present MedVLThinker, a suite of simple yet strong baselines. Our fully open recipe consists of: (1) systematic data curation for both text-only and image-text medical data, filtered according to varying levels of reasoning difficulty, and (2) two training paradigms: Supervised Fine-Tuning (SFT) on distilled reasoning traces and Reinforcement Learning with Verifiable Rewards (RLVR) based on final answer correctness. Across extensive experiments on the Qwen2.5-VL model family (3B, 7B) and six medical QA benchmarks, we find that RLVR consistently and significantly outperforms SFT. Additionally, under the RLVR framework, a key, counter-intuitive finding is that training on our curated text-only reasoning data provides a more substantial performance boost than training on multimodal image-text data. Our best open 7B model, trained using the RLVR recipe on text-only data, establishes a new state-of-the-art on existing public VQA benchmarks, surpassing all previous open-source medical LMMs. Furthermore, scaling our model to 32B achieves performance on par with the proprietary GPT-4o. We release all curated data, models, and code to provide the community with a strong, open foundation for future research in multimodal medical reasoning.
RLVR-World: Training World Models with Reinforcement Learning
World models predict state transitions in response to actions and are increasingly developed across diverse modalities. However, standard training objectives such as maximum likelihood estimation (MLE) often misalign with task-specific goals of world models, i.e., transition prediction metrics like accuracy or perceptual quality. In this paper, we present RLVR-World, a unified framework that leverages reinforcement learning with verifiable rewards (RLVR) to directly optimize world models for such metrics. Despite formulating world modeling as autoregressive prediction of tokenized sequences, RLVR-World evaluates metrics of decoded predictions as verifiable rewards. We demonstrate substantial performance gains on both language- and video-based world models across domains, including text games, web navigation, and robot manipulation. Our work indicates that, beyond recent advances in reasoning language models, RLVR offers a promising post-training paradigm for enhancing the utility of generative models more broadly.
DCPO: Dynamic Clipping Policy Optimization
Reinforcement Learning from Verifiable Rewards (RLVR) has emerged as a promising framework for enhancing the reasoning capabilities of large language models. However, existing approaches such as GRPO often suffer from zero gradients. This problem arises primarily due to fixed clipping bounds for token-level probability ratios and the standardization of identical rewards, which can lead to ineffective gradient updates and underutilization of generated responses. In this work, we propose Dynamic Clipping Policy Optimization (DCPO), which introduces a dynamic clipping strategy that adaptively adjusts the clipping bounds based on token-specific prior probabilities to enhance token-level exploration, and a smooth advantage standardization technique that standardizes rewards across cumulative training steps to improve the response-level effective utilization of generated responses. DCPO achieved state-of-the-art performance on four benchmarks based on four different models. In particular, DCPO achieved an Avg@1 of 46.7 under greedy decoding and an Avg@32 of 38.8 under 32 times sampling on the AIME24 benchmark, surpassing both DAPO (36.7/31.6) and GRPO (36.7/32.1) on the Qwen2.5-Math-7B model. On the AIME25 benchmark based on Qwen2.5-14B, DCPO achieves a performance of (23.3/19.0), surpassing GRPO (13.3/10.5) and DAPO (20.0/15.3). Furthermore, DCPO achieved an average 28% improvement in the nonzero advantage over GRPO in four models, doubled the training efficiency over DAPO, and significantly reduced the token clipping ratio by an order of magnitude compared to both GRPO and DAPO, while achieving superior performance. These results highlight DCPO's effectiveness in leveraging generated data more efficiently for reinforcement learning in large language models.
Agentic Reinforced Policy Optimization
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks. In realistic reasoning scenarios, LLMs can often utilize external tools to assist in task-solving processes. However, current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions. To bridge this gap, we propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents. Through preliminary experiments, we observe that LLMs tend to exhibit highly uncertain behavior, characterized by an increase in the entropy distribution of generated tokens, immediately following interactions with external tools. Motivated by this observation, ARPO incorporates an entropy-based adaptive rollout mechanism, dynamically balancing global trajectory sampling and step-level sampling, thereby promoting exploration at steps with high uncertainty after tool usage. By integrating an advantage attribution estimation, ARPO enables LLMs to internalize advantage differences in stepwise tool-use interactions. Our experiments across 13 challenging benchmarks in computational reasoning, knowledge reasoning, and deep search domains demonstrate ARPO's superiority over trajectory-level RL algorithms. Remarkably, ARPO achieves improved performance using only half of the tool-use budget required by existing methods, offering a scalable solution for aligning LLM-based agents with real-time dynamic environments. Our code and datasets are released at https://github.com/dongguanting/ARPO
Back to Basics: Revisiting Exploration in Reinforcement Learning for LLM Reasoning via Generative Probabilities
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an indispensable paradigm for enhancing reasoning in Large Language Models (LLMs). However, standard policy optimization methods, such as Group Relative Policy Optimization (GRPO), often converge to low-entropy policies, leading to severe mode collapse and limited output diversity. We analyze this issue from the perspective of sampling probability dynamics, identifying that the standard objective disproportionately reinforces the highest-likelihood paths, thereby suppressing valid alternative reasoning chains. To address this, we propose a novel Advantage Re-weighting Mechanism (ARM) designed to equilibrate the confidence levels across all correct responses. By incorporating Prompt Perplexity and Answer Confidence into the advantage estimation, our method dynamically reshapes the reward signal to attenuate the gradient updates of over-confident reasoning paths, while redistributing probability mass toward under-explored correct solutions. Empirical results demonstrate that our approach significantly enhances generative diversity and response entropy while maintaining competitive accuracy, effectively achieving a superior trade-off between exploration and exploitation in reasoning tasks. Empirical results on Qwen2.5 and DeepSeek models across mathematical and coding benchmarks show that ProGRPO significantly mitigates entropy collapse. Specifically, on Qwen2.5-7B, our method outperforms GRPO by 5.7% in Pass@1 and, notably, by 13.9% in Pass@32, highlighting its superior capability in generating diverse correct reasoning paths.
ReProHRL: Towards Multi-Goal Navigation in the Real World using Hierarchical Agents
Robots have been successfully used to perform tasks with high precision. In real-world environments with sparse rewards and multiple goals, learning is still a major challenge and Reinforcement Learning (RL) algorithms fail to learn good policies. Training in simulation environments and then fine-tuning in the real world is a common approach. However, adapting to the real-world setting is a challenge. In this paper, we present a method named Ready for Production Hierarchical RL (ReProHRL) that divides tasks with hierarchical multi-goal navigation guided by reinforcement learning. We also use object detectors as a pre-processing step to learn multi-goal navigation and transfer it to the real world. Empirical results show that the proposed ReProHRL method outperforms the state-of-the-art baseline in simulation and real-world environments in terms of both training time and performance. Although both methods achieve a 100% success rate in a simple environment for single goal-based navigation, in a more complex environment and multi-goal setting, the proposed method outperforms the baseline by 18% and 5%, respectively. For the real-world implementation and proof of concept demonstration, we deploy the proposed method on a nano-drone named Crazyflie with a front camera to perform multi-goal navigation experiments.
ETR: Outcome-Guided Elastic Trust Regions for Policy Optimization
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an important paradigm for unlocking reasoning capabilities in large language models, exemplified by the success of OpenAI o1 and DeepSeek-R1. Currently, Group Relative Policy Optimization (GRPO) stands as the dominant algorithm in this domain due to its stable training and critic-free efficiency. However, we argue that GRPO suffers from a structural limitation: it imposes a uniform, static trust region constraint across all samples. This design implicitly assumes signal homogeneity, a premise misaligned with the heterogeneous nature of outcome-driven learning, where advantage magnitudes and variances fluctuate significantly. Consequently, static constraints fail to fully exploit high-quality signals while insufficiently suppressing noise, often precipitating rapid entropy collapse. To address this, we propose Elastic Trust Regions (ETR), a dynamic mechanism that aligns optimization constraints with signal quality. ETR constructs a signal-aware landscape through dual-level elasticity: at the micro level, it scales clipping boundaries based on advantage magnitude to accelerate learning from high-confidence paths; at the macro level, it leverages group variance to implicitly allocate larger update budgets to tasks in the optimal learning zone. Extensive experiments on AIME and MATH benchmarks demonstrate that ETR consistently outperforms GRPO, achieving superior accuracy while effectively mitigating policy entropy degradation to ensure sustained exploration.
RLOR: A Flexible Framework of Deep Reinforcement Learning for Operation Research
Reinforcement learning has been applied in operation research and has shown promise in solving large combinatorial optimization problems. However, existing works focus on developing neural network architectures for certain problems. These works lack the flexibility to incorporate recent advances in reinforcement learning, as well as the flexibility of customizing model architectures for operation research problems. In this work, we analyze the end-to-end autoregressive models for vehicle routing problems and show that these models can benefit from the recent advances in reinforcement learning with a careful re-implementation of the model architecture. In particular, we re-implemented the Attention Model and trained it with Proximal Policy Optimization (PPO) in CleanRL, showing at least 8 times speed up in training time. We hereby introduce RLOR, a flexible framework for Deep Reinforcement Learning for Operation Research. We believe that a flexible framework is key to developing deep reinforcement learning models for operation research problems. The code of our work is publicly available at https://github.com/cpwan/RLOR.
The Reasoning Boundary Paradox: How Reinforcement Learning Constrains Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving Large Language Models' reasoning capabilities, yet recent evidence suggests it may paradoxically shrink the reasoning boundary rather than expand it. This paper investigates the shrinkage issue of RLVR by analyzing its learning dynamics and reveals two critical phenomena that explain this failure. First, we expose negative interference in RLVR, where learning to solve certain training problems actively reduces the likelihood of correct solutions for others, leading to the decline of Pass@k performance, or the probability of generating a correct solution within k attempts. Second, we uncover the winner-take-all phenomenon: RLVR disproportionately reinforces problems with high likelihood, correct solutions, under the base model, while suppressing other initially low-likelihood ones. Through extensive theoretical and empirical analysis on multiple mathematical reasoning benchmarks, we show that this effect arises from the inherent on-policy sampling in standard RL objectives, causing the model to converge toward narrow solution strategies. Based on these insights, we propose a simple yet effective data curation algorithm that focuses RLVR learning on low-likelihood problems, achieving notable improvement in Pass@k performance. Our code is available at https://github.com/mail-research/SELF-llm-interference.
Limits of Generalization in RLVR: Two Case Studies in Mathematical Reasoning
Mathematical reasoning is a central challenge for large language models (LLMs), requiring not only correct answers but also faithful reasoning processes. Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a promising approach for enhancing such capabilities; however, its ability to foster genuine reasoning remains unclear. We investigate RLVR on two combinatorial problems with fully verifiable solutions: Activity Scheduling and the Longest Increasing Subsequence, using carefully curated datasets with unique optima. Across multiple reward designs, we find that RLVR improves evaluation metrics but often by reinforcing superficial heuristics rather than acquiring new reasoning strategies. These findings highlight the limits of RLVR generalization, emphasizing the importance of benchmarks that disentangle genuine mathematical reasoning from shortcut exploitation and provide faithful measures of progress. Code available at https://github.com/xashru/rlvr-seq-generalization.
StageVAR: Stage-Aware Acceleration for Visual Autoregressive Models
Visual Autoregressive (VAR) modeling departs from the next-token prediction paradigm of traditional Autoregressive (AR) models through next-scale prediction, enabling high-quality image generation. However, the VAR paradigm suffers from sharply increased computational complexity and running time at large-scale steps. Although existing acceleration methods reduce runtime for large-scale steps, but rely on manual step selection and overlook the varying importance of different stages in the generation process. To address this challenge, we present StageVAR, a systematic study and stage-aware acceleration framework for VAR models. Our analysis shows that early steps are critical for preserving semantic and structural consistency and should remain intact, while later steps mainly refine details and can be pruned or approximated for acceleration. Building on these insights, StageVAR introduces a plug-and-play acceleration strategy that exploits semantic irrelevance and low-rank properties in late-stage computations, without requiring additional training. Our proposed StageVAR achieves up to 3.4x speedup with only a 0.01 drop on GenEval and a 0.26 decrease on DPG, consistently outperforming existing acceleration baselines. These results highlight stage-aware design as a powerful principle for efficient visual autoregressive image generation.
Beyond High-Entropy Exploration: Correctness-Aware Low-Entropy Segment-Based Advantage Shaping for Reasoning LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) has become a central approach for improving the reasoning ability of large language models. Recent work studies RLVR through token entropy, arguing that high-entropy tokens drive exploration and should receive stronger updates. However, they overlook the fact that most of a reasoning trajectory consists of low-entropy segments that encode stable and reusable structural patterns. Through qualitative and quantitative analyses, we find that the overlap of low-entropy segments across correct responses strongly correlates with model accuracy, while overlaps involving incorrect responses exhibit stable but unproductive patterns. Motivated by these findings, we propose LESS, a correctness-aware reinforcement framework that performs fine-grained advantage modulation over low-entropy segments. LESS amplifies segments unique to correct responses, suppresses those unique to incorrect ones, and neutralizes segments shared by both, while preserving high-entropy exploration in the underlying RL algorithm. Instantiated on top of the popular GRPO, LESS consistently improves accuracy over strong RL baselines across three backbones and six math benchmarks, achieves stronger robustness of the performance floor.
The Invisible Leash: Why RLVR May Not Escape Its Origin
Recent advances in large reasoning models highlight Reinforcement Learning with Verifiable Rewards (RLVR) as a promising method for enhancing AI's capabilities, particularly in solving complex logical tasks. However, it remains unclear whether RLVR truly expands a model's reasoning boundary or merely amplifies high-reward outputs that the base model already knows for improved precision. This study presents a theoretical and empirical investigation that provides fresh insights into the potential limits of RLVR. First, we offer a new theoretical perspective that RLVR is constrained by the base model's support-unable to sample solutions with zero initial probability-and operates as a conservative reweighting mechanism that may restrict the discovery of entirely original solutions. We also identify an entropy-reward tradeoff: while RLVR reliably enhances precision, it may progressively narrow exploration and potentially overlook correct yet underrepresented solutions. Extensive empirical experiments validate that while RLVR consistently improves pass@1, the shrinkage of empirical support generally outweighs the expansion of empirical support under larger sampling budgets, failing to recover correct answers that were previously accessible to the base model. Interestingly, we also observe that while RLVR sometimes increases token-level entropy, resulting in greater uncertainty at each generation step, answer-level entropy declines, indicating that these seemingly more uncertain paths ultimately converge onto a smaller set of distinct answers. Taken together, these findings reveal potential limits of RLVR in extending reasoning horizons. Breaking this invisible leash may require future algorithmic innovations such as explicit exploration mechanisms or hybrid strategies that seed probability mass into underrepresented solution regions.
Pass@k Training for Adaptively Balancing Exploration and Exploitation of Large Reasoning Models
Reinforcement learning with verifiable rewards (RLVR), which typically adopts Pass@1 as the reward, has faced the issues in balancing exploration and exploitation, causing policies to prefer conservative actions, converging to a local optimum. Identifying an appropriate reward metric is therefore crucial. Regarding the prior work, although Pass@k has been used in evaluation, its connection to LLM exploration ability in RLVR remains largely overlooked. To investigate this, we first use Pass@k as the reward to train the policy model (i.e., Pass@k Training), and observe the improvement on its exploration ability. Next, we derive an analytical solution for the advantage of Pass@k Training, leading to an efficient and effective process. Building on this, our analysis reveals that exploration and exploitation are not inherently conflicting objectives, while they can mutually enhance each other. Moreover, Pass@k Training with analytical derivation essentially involves directly designing the advantage function. Inspired by this, we preliminarily explore the advantage design for RLVR, showing promising results and highlighting a potential future direction.
Expanding RL with Verifiable Rewards Across Diverse Domains
Reinforcement learning (RL) with verifiable rewards (RLVR) has shown promising results in mathematical reasoning and coding tasks where well-structured reference answers are available. However, its applicability to broader domains remains underexplored. In this work, we study the extension of RLVR to more diverse domains such as medicine, chemistry, psychology, and economics. We observe high agreement in binary judgments across different large language models (LLMs) when objective reference answers exist, which challenges the necessity of large-scale annotation for training domain-specific reward models. To address the limitations of binary rewards when handling unstructured reference answers, we further incorporate model-based soft scoring into RLVR to improve its flexibility. Our experiments show that a distilled generative reward model can serve as an effective cross-domain verifier, providing reliable reward signals for RL without requiring domain-specific annotations. By fine-tuning a base 7B model using various RL algorithms against our reward model, we obtain policies that outperform state-of-the-art open-source aligned LLMs such as Qwen2.5-72B-Instruct and DeepSeek-R1-Distill-Qwen-32B by a large margin, across domains in free-form answer settings. This also strengthens RLVR's robustness and scalability, highlighting its potential for real-world applications with noisy or weak labels.
VOGUE: Guiding Exploration with Visual Uncertainty Improves Multimodal Reasoning
Reinforcement learning with verifiable rewards (RLVR) improves reasoning in large language models (LLMs) but struggles with exploration, an issue that still persists for multimodal LLMs (MLLMs). Current methods treat the visual input as a fixed, deterministic condition, overlooking a critical source of ambiguity and struggling to build policies robust to plausible visual variations. We introduce VOGUE (Visual Uncertainty Guided Exploration), a novel method that shifts exploration from the output (text) to the input (visual) space. By treating the image as a stochastic context, VOGUE quantifies the policy's sensitivity to visual perturbations using the symmetric KL divergence between a "raw" and "noisy" branch, creating a direct signal for uncertainty-aware exploration. This signal shapes the learning objective via an uncertainty-proportional bonus, which, combined with a token-entropy bonus and an annealed sampling schedule, effectively balances exploration and exploitation. Implemented within GRPO on two model scales (Qwen2.5-VL-3B/7B), VOGUE boosts pass@1 accuracy by an average of 2.6% on three visual math benchmarks and 3.7% on three general-domain reasoning benchmarks, while simultaneously increasing pass@4 performance and mitigating the exploration decay commonly observed in RL fine-tuning. Our work shows that grounding exploration in the inherent uncertainty of visual inputs is an effective strategy for improving multimodal reasoning.
Efficient Medical VIE via Reinforcement Learning
Visual Information Extraction (VIE) converts unstructured document images into structured formats like JSON, critical for medical applications such as report analysis and online consultations. Traditional methods rely on OCR and language models, while end-to-end multimodal models offer direct JSON generation. However, domain-specific schemas and high annotation costs limit their effectiveness in medical VIE. We base our approach on the Reinforcement Learning with Verifiable Rewards (RLVR) framework to address these challenges using only 100 annotated samples. Our approach ensures dataset diversity, a balanced precision-recall reward mechanism to reduce hallucinations and improve field coverage, and innovative sampling strategies to enhance reasoning capabilities. Fine-tuning Qwen2.5-VL-7B with our RLVR method, we achieve state-of-the-art performance on medical VIE tasks, significantly improving F1, precision, and recall. While our models excel on tasks similar to medical datasets, performance drops on dissimilar tasks, highlighting the need for domain-specific optimization. Case studies further demonstrate the value of reasoning during training and inference for VIE.
SimKO: Simple Pass@K Policy Optimization
Reinforcement learning with verifiable rewards (RLVR) has advanced the reasoning capabilities of large language models (LLMs). However, prevailing RLVR methods exhibit a systematic bias toward exploitation over exploration, as evidenced by improved pass@1 but reduced pass@K (K>1) performance. To understand this issue, we analyze training dynamics of RLVR methods by tracking the token-level probability distributions over vocabulary candidates. Our analysis reveals a consistent probability concentration effect where the top-1 candidate increasingly accumulates probability mass and suppresses that of other candidates. More importantly, stronger over-concentration correlates with worse pass@K performance. Inspired by this finding, we propose Simple Pass@K Optimization (SimKO), a method designed to mitigate the over-concentration issue, thereby encouraging exploration. SimKO operates in an asymmetrical manner. For verified-correct responses, it boosts the probabilities of the top-K candidates. For verified-incorrect responses, it applies stronger penalties to the top-1 candidate. We observe that this asymmetric design is particularly effective at mitigating over-concentration when applied at tokens with high entropy. Across various math and logical-reasoning benchmarks, SimKO consistently yields higher pass@K for a wide range of K, providing a simple way to improve RLVR's exploration.
VCRL: Variance-based Curriculum Reinforcement Learning for Large Language Models
Policy-based reinforcement learning currently plays an important role in improving LLMs on mathematical reasoning tasks. However, existing rollout-based reinforcement learning methods (GRPO, DAPO, GSPO, etc.) fail to explicitly consider LLMs' learning ability for samples of different difficulty levels, which is contrary to the human cognitive process of mathematical reasoning tasks from easy to difficult. Intuitively, we find that the variance of the rollout group's reward in RLVR partly reflects the difficulty of the current sample for LLMs. Samples that are too easy or too difficult have a lower variance, while samples with moderate difficulty have a higher variance. Based on this, we propose VCRL, a curriculum reinforcement learning framework that dynamically controls the difficulty of training samples based on the variance of group rewards. Experiments on five mathematical benchmarks and two models reveal the advantages of VCRL over the current LLM RL baselines.
Ariadne: A Controllable Framework for Probing and Extending VLM Reasoning Boundaries
While Vision-Language Models (VLMs) post-trained with Reinforcement Learning (RL) show impressive general reasoning, their evaluation is often confined to language-dominant tasks (e.g., math). This raises a critical question: can RL post-training truly extend the inherent capability boundary of a base VLM, particularly for visual-centric spatial tasks where it initially fails? To investigate this, we introduce Ariadne, a framework utilizing synthetic mazes for multi-step spatial reasoning where task difficulty (e.g., path length, turns) is precisely controlled. We leverage this controllable environment to train VLMs using Reinforcement Learning with Verified Rewards (RLVR) in a difficulty-aware curriculum. Surprisingly, post-RLVR training, the VLM achieves over 50% accuracy on a problem set where the base model scored 0%, demonstrating that our approach expands the model's initial capability boundary. To assess real-world viability, we evaluate out-of-distribution (OOD) generalization on practical benchmarks. Despite training only on synthetic maze samples, Ariadne achieves significant zero-shot improvements, averaging 16% on MapBench (e.g., museum navigation) and 24% on ReasonMap (subway transfer tasks). These results confirm that our method not only broadens the model's fundamental limits but also enhances its generalization to real-world spatial reasoning. We acknowledge our study is limited to the post-training phase, given the opaqueness of pre-training data, and hope our research motivates further work on specialized, capability-extending alignment.
LaSeR: Reinforcement Learning with Last-Token Self-Rewarding
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a core paradigm for enhancing the reasoning capabilities of Large Language Models (LLMs). To address the lack of verification signals at test time, prior studies incorporate the training of model's self-verification capability into the standard RLVR process, thereby unifying reasoning and verification capabilities within a single LLM. However, previous practice requires the LLM to sequentially generate solutions and self-verifications using two separate prompt templates, which significantly reduces efficiency. In this work, we theoretically reveal that the closed-form solution to the RL objective of self-verification can be reduced to a remarkably simple form: the true reasoning reward of a solution is equal to its last-token self-rewarding score, which is computed as the difference between the policy model's next-token log-probability assigned to any pre-specified token at the solution's last token and a pre-calculated constant, scaled by the KL coefficient. Based on this insight, we propose LaSeR (Reinforcement Learning with Last-Token Self-Rewarding), an algorithm that simply augments the original RLVR loss with a MSE loss that aligns the last-token self-rewarding scores with verifier-based reasoning rewards, jointly optimizing the reasoning and self-rewarding capabilities of LLMs. The optimized self-rewarding scores can be utilized in both training and testing to enhance model performance. Notably, our algorithm derives these scores from the predicted next-token probability distribution of the last token immediately after generation, incurring only the minimal extra cost of one additional token inference. Experiments show that our method not only improves the model's reasoning performance but also equips it with remarkable self-rewarding capability, thereby boosting its inference-time scaling performance.
RRLS : Robust Reinforcement Learning Suite
Robust reinforcement learning is the problem of learning control policies that provide optimal worst-case performance against a span of adversarial environments. It is a crucial ingredient for deploying algorithms in real-world scenarios with prevalent environmental uncertainties and has been a long-standing object of attention in the community, without a standardized set of benchmarks. This contribution endeavors to fill this gap. We introduce the Robust Reinforcement Learning Suite (RRLS), a benchmark suite based on Mujoco environments. RRLS provides six continuous control tasks with two types of uncertainty sets for training and evaluation. Our benchmark aims to standardize robust reinforcement learning tasks, facilitating reproducible and comparable experiments, in particular those from recent state-of-the-art contributions, for which we demonstrate the use of RRLS. It is also designed to be easily expandable to new environments. The source code is available at https://github.com/SuReLI/RRLS{https://github.com/SuReLI/RRLS}.
Lookahead Tree-Based Rollouts for Enhanced Trajectory-Level Exploration in Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR), particularly with algorithms like Group Relative Policy Optimization (GRPO), has proven highly effective in enhancing the reasoning capabilities of large language models. However, a critical bottleneck in current pipelines lies in the limited diversity of sampled trajectories during group rollouts. Homogeneous trajectories and their associated rewards would diminish the return signals for policy updates, thereby hindering effective policy learning. This lack of diversity stems primarily from token-level stochastic sampling, where local variations are likely to collapse into near-identical reasoning paths. To address this limitation, we propose Lookahead Tree-Based Rollouts (LATR), a novel rollout strategy designed to explicitly promotes trajectory-level diversity by enforcing branching into different candidate tokens likely to yield distinct continuations. Specifically, LATR iteratively operates in three stages: (1) branching at high-uncertainty generation steps, (2) performing lookahead simulation for each new branch, and (3) pruning branches that exhibits prolonged similarity during simulation. Compared with stochastic Sampling, LATR accelerates policy learning by 131% on average and improves final pass@1 performance by 4.2% on both GRPO and Dynamic sAmpling Policy Optimization (DAPO) algorithms across different reasoning tasks. Our code and data are publicly available at https://github.com/starreeze/latr.
Orchestrating Tokens and Sequences: Dynamic Hybrid Policy Optimization for RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) offers a promising framework for optimizing large language models in reasoning tasks. However, existing RLVR algorithms focus on different granularities, and each has complementary strengths and limitations. Group Relative Policy Optimization (GRPO) updates the policy with token-level importance ratios, which preserves fine-grained credit assignment but often suffers from high variance and instability. In contrast, Group Sequence Policy Optimization (GSPO) applies single sequence-level importance ratios across all tokens in a response that better matches sequence-level rewards, but sacrifices token-wise credit assignment. In this paper, we propose Dynamic Hybrid Policy Optimization (DHPO) to bridge GRPO and GSPO within a single clipped surrogate objective. DHPO combines token-level and sequence-level importance ratios using weighting mechanisms. We explore two variants of the mixing mechanism, including an averaged mixing and an entropy-guided mixing. To further stabilize training, we employ a branch-specific clipping strategy that constrains token-level and sequence-level ratios within separate trust regions before mixing, preventing outliers in either branch from dominating the update. Across seven challenging mathematical reasoning benchmarks, experiments on both dense and MoE models from the Qwen3 series show that DHPO consistently outperforms GRPO and GSPO. We will release our code upon acceptance of this paper.
Decomposing the Entropy-Performance Exchange: The Missing Keys to Unlocking Effective Reinforcement Learning
Recently, reinforcement learning with verifiable rewards (RLVR) has been widely used for enhancing the reasoning abilities of large language models (LLMs). A core challenge in RLVR involves managing the exchange between entropy and performance of policies. Despite the importance of this exchange, a fine-grained understanding of when and how this exchange operates most effectively remains limited. To bridge this gap, we conduct a systematic empirical analysis of the entropy-performance exchange mechanism of RLVR across different levels of granularity. Specifically, we first divide the training process into two distinct stages based on entropy dynamics, i.e., rising stage and plateau stage, and then systematically investigate how this mechanism varies across stage-level, instance-level, and token-level granularitiess. Our analysis reveals that, in the rising stage, entropy reduction in negative samples facilitates the learning of effective reasoning patterns, which in turn drives rapid performance gains. Moreover, in the plateau stage, learning efficiency strongly correlates with high-entropy tokens present in low-perplexity samples and those located at the end of sequences. Motivated by these findings, we propose two methods that dynamically adjust the reward signal using perplexity and positional information to focus RL updates on tokens that exhibit high learning potential, achieving improvements compared to the baseline methods on various LLMs.
Diversity-Incentivized Exploration for Versatile Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a crucial paradigm for incentivizing reasoning capabilities in Large Language Models (LLMs). Due to vast state-action spaces and reward sparsity in reasoning tasks, existing methods often struggle with deficient exploration and poor sample efficiency. In the paper, we propose DIVER (Diversity-Incentivized Exploration for VersatilE Reasoning), an innovative framework that highlights the pivotal role of global sequence-level diversity to incentivize deep exploration for versatile reasoning. We first conduct a primary empirical study to reveal a strong positive correlation between global diversity and reasoning capacity. Building on this insight, we introduce global diversity incentives as an intrinsic reward to promote deep exploration in a semantically structured space. Incorporating the intrinsic reward, we develop a potential-based reward shaping mechanism to preserve optimal policy invariance and design simple heuristics to mitigate possible reward hacking. Experimental results show that DIVER outperforms competitive RLVR baselines with various exploration strategies on both in-domain and out-of-domain tasks, excelling in both Pass@1 and Pass@k evaluations. Our code is available at https://github.com/NJU-RL/DIVER.
Rethinking Entropy Regularization in Large Reasoning Models
Reinforcement learning with verifiable rewards (RLVR) has shown great promise in enhancing the reasoning abilities of large reasoning models (LRMs). However, it suffers from a critical issue: entropy collapse and premature convergence. Naive entropy regularization, a common approach for encouraging exploration in the traditional RL literature, fails to address this problem in the context of LRM. Our analysis reveals that this failure stems from the vast action space and long trajectories in LRMs, which easily trigger a global entropy explosion as the model indiscriminately explores all possible actions and states. To address this, we propose SIREN (SelectIve entRopy rEgularizatioN), a method that confines exploration to a meaningful subset of actions and states. SIREN achieves this through a two-step entropy masking mechanism, consisting of a top-p mask and a peak-entropy mask. In addition, regularization is transformed into a self-anchored form to stabilize training. Across five mathematical benchmarks, SIREN attains superior average performance over previous entropy-related RLVR approaches, exemplified by a +6.6 maj@k improvement on AIME24/25 with Qwen2.5-Math-7B. Further analysis confirms that SIREN promotes greater response diversity and maintains entropy at an appropriate level, which helps to preserve the validation pass@k throughout training. This effectively mitigates the premature convergence problem common in RLVR for LRM.
ROVR-Open-Dataset: A Large-Scale Depth Dataset for Autonomous Driving
Depth estimation is a fundamental task for 3D scene understanding in autonomous driving, robotics, and augmented reality. Existing depth datasets, such as KITTI, nuScenes, and DDAD, have advanced the field but suffer from limitations in diversity and scalability. As benchmark performance on these datasets approaches saturation, there is an increasing need for a new generation of large-scale, diverse, and cost-efficient datasets to support the era of foundation models and multi-modal learning. We present ROVR, a large-scale, diverse, and cost-efficient depth dataset designed to capture the complexity of real-world driving. ROVR comprises 200K high-resolution frames across highway, rural, and urban scenarios, spanning day/night and adverse weather conditions. A lightweight acquisition pipeline ensures scalable collection, while sparse but statistically sufficient ground truth supports robust training. Benchmarking with state-of-the-art monocular depth models reveals severe cross-dataset generalization failures: models achieving near-ceiling accuracy on KITTI degrade drastically on ROVR, and even when trained on ROVR, current methods fall short of saturation. These results highlight the unique challenges posed by ROVR-scene diversity, dynamic environments, and sparse ground truth, establishing it as a demanding new platform for advancing depth estimation and building models with stronger real-world robustness. Extensive ablation studies provide a more intuitive understanding of our dataset across different scenarios, lighting conditions, and generalized ability.
Multi-Stage Cable Routing through Hierarchical Imitation Learning
We study the problem of learning to perform multi-stage robotic manipulation tasks, with applications to cable routing, where the robot must route a cable through a series of clips. This setting presents challenges representative of complex multi-stage robotic manipulation scenarios: handling deformable objects, closing the loop on visual perception, and handling extended behaviors consisting of multiple steps that must be executed successfully to complete the entire task. In such settings, learning individual primitives for each stage that succeed with a high enough rate to perform a complete temporally extended task is impractical: if each stage must be completed successfully and has a non-negligible probability of failure, the likelihood of successful completion of the entire task becomes negligible. Therefore, successful controllers for such multi-stage tasks must be able to recover from failure and compensate for imperfections in low-level controllers by smartly choosing which controllers to trigger at any given time, retrying, or taking corrective action as needed. To this end, we describe an imitation learning system that uses vision-based policies trained from demonstrations at both the lower (motor control) and the upper (sequencing) level, present a system for instantiating this method to learn the cable routing task, and perform evaluations showing great performance in generalizing to very challenging clip placement variations. Supplementary videos, datasets, and code can be found at https://sites.google.com/view/cablerouting.
Scheduling Your LLM Reinforcement Learning with Reasoning Trees
Using Reinforcement Learning with Verifiable Rewards (RLVR) to optimize Large Language Models (LLMs) can be conceptualized as progressively editing a query's `Reasoning Tree'. This process involves exploring nodes (tokens) and dynamically modifying the model's policy at each node. When combined with data scheduling, this process yields further gains in data efficiency and accuracy. However, existing RLVR data scheduling methods typically rely on path-based metrics to rank queries, overlooking the reasoning tree structures of these queries. In this paper, we introduce a novel metric, namely Reasoning Score (r-score), which measures the query's learning difficulty based on the structure of its reasoning tree. Based on the r-score, we propose the Reasoning Tree Schedule (Re-Schedule), a scheduling algorithm that constructs a curriculum progressing from structurally simple (high r-score) to complex (low r-score) queries. Experiments on six math-reasoning benchmarks show that Re-Schedule significantly improves average accuracy, achieving gains of up to 3.2%. These strong results validate our approach and demonstrate that a structural understanding of the reasoning tree provides a more powerful and principled foundation for RLVR data scheduling.
The Choice of Divergence: A Neglected Key to Mitigating Diversity Collapse in Reinforcement Learning with Verifiable Reward
A central paradox in fine-tuning Large Language Models (LLMs) with Reinforcement Learning with Verifiable Reward (RLVR) is the frequent degradation of multi-attempt performance (Pass@k) despite improvements in single-attempt accuracy (Pass@1). This is often accompanied by catastrophic forgetting, where models lose previously acquired skills. While various methods have been proposed, the choice and function of the divergence term have been surprisingly unexamined as a proactive solution. We argue that standard RLVR objectives -- both those using the mode-seeking reverse KL-divergence and those forgoing a divergence term entirely -- lack a crucial mechanism for knowledge retention. The reverse-KL actively accelerates this decay by narrowing the policy, while its absence provides no safeguard against the model drifting from its diverse knowledge base. We propose a fundamental shift in perspective: using the divergence term itself as the solution. Our framework, Diversity-Preserving Hybrid RL (DPH-RL), leverages mass-covering f-divergences (like forward-KL and JS-divergence) to function as a rehearsal mechanism. By continuously referencing the initial policy, this approach forces the model to maintain broad solution coverage. Extensive experiments on math and SQL generation demonstrate that DPH-RL not only resolves the Pass@k degradation but improves both Pass@1 and Pass@k in- and out-of-domain. Additionally, DPH-RL is more training-efficient because it computes f-divergence using generator functions, requiring only sampling from the initial policy and no online reference model. Our work highlights a crucial, overlooked axis for improving RLVR, demonstrating that the proper selection of a divergence measure is a powerful tool for building more general and diverse reasoning models.
RLFR: Extending Reinforcement Learning for LLMs with Flow Environment
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a promising framework for improving reasoning abilities in Large Language Models (LLMs). However, policy optimized with binary verification prone to overlook potential valuable exploration in reasoning trajectory. In view of heavy annotation cost of golden Process Reward Models (PRMs), recent works attempt using auxiliary signals for reward shaping of process tokens, involving entropy and likelihood collected from logit space. In this work, we offer a novel perspective on shaping RLVR with flow rewards derived from latent space, and propose RLFR, where the flow fields of model latents are constructed from either off-policy high-quality data and on-policy rejection sampling data, and the velocity deviations of policy latents within it are quantified to serve as a reward signal. RLFR first demonstrates that a well-established flow field can be a sound environment for reward signal collection, highlighting the expressive latent space is much underexplored. Moreover, RLFR is able to compress any off-policy expert data as reference for constituting reward signals, and we show that the efficient context dependence compressed within the hidden states are utilized, rather than individual token-level denotation for context comprehending. Experiments on both language and multimodal reasoning benchmarks demonstrate the reliability of flow rewards, and suggesting a promising paradigm for reward shaping with auxiliary signals.
R1-Omni: Explainable Omni-Multimodal Emotion Recognition with Reinforcing Learning
In this work, we present the first application of Reinforcement Learning with Verifiable Reward (RLVR) to an Omni-multimodal large language model in the context of emotion recognition, a task where both visual and audio modalities play crucial roles. We leverage RLVR to optimize the Omni model, significantly enhancing its performance in three key aspects: reasoning capability, emotion recognition accuracy, and generalization ability. The introduction of RLVR not only improves the model's overall performance on in-distribution data but also demonstrates superior robustness when evaluated on out-of-distribution datasets. More importantly, the improved reasoning capability enables clear analysis of the contributions of different modalities, particularly visual and audio information, in the emotion recognition process. This provides valuable insights into the optimization of multimodal large language models.
A Technical Survey of Reinforcement Learning Techniques for Large Language Models
Reinforcement Learning (RL) has emerged as a transformative approach for aligning and enhancing Large Language Models (LLMs), addressing critical challenges in instruction following, ethical alignment, and reasoning capabilities. This survey offers a comprehensive foundation on the integration of RL with language models, highlighting prominent algorithms such as Proximal Policy Optimization (PPO), Q-Learning, and Actor-Critic methods. Additionally, it provides an extensive technical overview of RL techniques specifically tailored for LLMs, including foundational methods like Reinforcement Learning from Human Feedback (RLHF) and AI Feedback (RLAIF), as well as advanced strategies such as Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO). We systematically analyze their applications across domains, i.e., from code generation to tool-augmented reasoning. We also present a comparative taxonomy based on reward modeling, feedback mechanisms, and optimization strategies. Our evaluation highlights key trends. RLHF remains dominant for alignment, and outcome-based RL such as RLVR significantly improves stepwise reasoning. However, persistent challenges such as reward hacking, computational costs, and scalable feedback collection underscore the need for continued innovation. We further discuss emerging directions, including hybrid RL algorithms, verifier-guided training, and multi-objective alignment frameworks. This survey serves as a roadmap for researchers advancing RL-driven LLM development, balancing capability enhancement with safety and scalability.
Efficient Reasoning via Reward Model
Reinforcement learning with verifiable rewards (RLVR) has been shown to enhance the reasoning capabilities of large language models (LLMs), enabling the development of large reasoning models (LRMs). However, LRMs such as DeepSeek-R1 and OpenAI o1 often generate verbose responses containing redundant or irrelevant reasoning step-a phenomenon known as overthinking-which substantially increases computational costs. Prior efforts to mitigate this issue commonly incorporate length penalties into the reward function, but we find they frequently suffer from two critical issues: length collapse and training collapse, resulting in sub-optimal performance. To address them, we propose a pipeline for training a Conciseness Reward Model (CRM) that scores the conciseness of reasoning path. Additionally, we introduce a novel reward formulation named Conciseness Reward Function (CRF) with explicit dependency between the outcome reward and conciseness score, thereby fostering both more effective and more efficient reasoning. From a theoretical standpoint, we demonstrate the superiority of the new reward from the perspective of variance reduction and improved convergence properties. Besides, on the practical side, extensive experiments on five mathematical benchmark datasets demonstrate the method's effectiveness and token efficiency, which achieves an 8.1% accuracy improvement and a 19.9% reduction in response token length on Qwen2.5-7B. Furthermore, the method generalizes well to other LLMs including Llama and Mistral. The implementation code and datasets are publicly available for reproduction: https://anonymous.4open.science/r/CRM.
