1 Ethical Reasoning and Moral Value Alignment of LLMs Depend on the Language we Prompt them in Ethical reasoning is a crucial skill for Large Language Models (LLMs). However, moral values are not universal, but rather influenced by language and culture. This paper explores how three prominent LLMs -- GPT-4, ChatGPT, and Llama2-70B-Chat -- perform ethical reasoning in different languages and if their moral judgement depend on the language in which they are prompted. We extend the study of ethical reasoning of LLMs by Rao et al. (2023) to a multilingual setup following their framework of probing LLMs with ethical dilemmas and policies from three branches of normative ethics: deontology, virtue, and consequentialism. We experiment with six languages: English, Spanish, Russian, Chinese, Hindi, and Swahili. We find that GPT-4 is the most consistent and unbiased ethical reasoner across languages, while ChatGPT and Llama2-70B-Chat show significant moral value bias when we move to languages other than English. Interestingly, the nature of this bias significantly vary across languages for all LLMs, including GPT-4. 4 authors · Apr 29, 2024
1 Ethical Reasoning over Moral Alignment: A Case and Framework for In-Context Ethical Policies in LLMs In this position paper, we argue that instead of morally aligning LLMs to specific set of ethical principles, we should infuse generic ethical reasoning capabilities into them so that they can handle value pluralism at a global scale. When provided with an ethical policy, an LLM should be capable of making decisions that are ethically consistent to the policy. We develop a framework that integrates moral dilemmas with moral principles pertaining to different foramlisms of normative ethics, and at different levels of abstractions. Initial experiments with GPT-x models shows that while GPT-4 is a nearly perfect ethical reasoner, the models still have bias towards the moral values of Western and English speaking societies. 5 authors · Oct 11, 2023
1 Moral Foundations of Large Language Models Moral foundations theory (MFT) is a psychological assessment tool that decomposes human moral reasoning into five factors, including care/harm, liberty/oppression, and sanctity/degradation (Graham et al., 2009). People vary in the weight they place on these dimensions when making moral decisions, in part due to their cultural upbringing and political ideology. As large language models (LLMs) are trained on datasets collected from the internet, they may reflect the biases that are present in such corpora. This paper uses MFT as a lens to analyze whether popular LLMs have acquired a bias towards a particular set of moral values. We analyze known LLMs and find they exhibit particular moral foundations, and show how these relate to human moral foundations and political affiliations. We also measure the consistency of these biases, or whether they vary strongly depending on the context of how the model is prompted. Finally, we show that we can adversarially select prompts that encourage the moral to exhibit a particular set of moral foundations, and that this can affect the model's behavior on downstream tasks. These findings help illustrate the potential risks and unintended consequences of LLMs assuming a particular moral stance. 6 authors · Oct 23, 2023 1
- Denevil: Towards Deciphering and Navigating the Ethical Values of Large Language Models via Instruction Learning Large Language Models (LLMs) have made unprecedented breakthroughs, yet their increasing integration into everyday life might raise societal risks due to generated unethical content. Despite extensive study on specific issues like bias, the intrinsic values of LLMs remain largely unexplored from a moral philosophy perspective. This work delves into ethical values utilizing Moral Foundation Theory. Moving beyond conventional discriminative evaluations with poor reliability, we propose DeNEVIL, a novel prompt generation algorithm tailored to dynamically exploit LLMs' value vulnerabilities and elicit the violation of ethics in a generative manner, revealing their underlying value inclinations. On such a basis, we construct MoralPrompt, a high-quality dataset comprising 2,397 prompts covering 500+ value principles, and then benchmark the intrinsic values across a spectrum of LLMs. We discovered that most models are essentially misaligned, necessitating further ethical value alignment. In response, we develop VILMO, an in-context alignment method that substantially enhances the value compliance of LLM outputs by learning to generate appropriate value instructions, outperforming existing competitors. Our methods are suitable for black-box and open-source models, offering a promising initial step in studying the ethical values of LLMs. 6 authors · Oct 17, 2023