- On the State Constrained Optimal Control of the Stefan Type Free Boundary Problems We analyze the state constrained inverse Stefan type parabolic free boundary problem as an optimal control problem in the Sobolev-Besov spaces framework. Boundary heat flux, density of heat sources, and free boundary are components of the control vector. Cost functional is the sum of the L_2-norm declinations of the temperature measurement at the final moment, the phase transition temperature, the final position of the free boundary, and the penalty term, taking into account the state constraint on the temperature. We prove the existence of optimal control, Frechet differentiability, and optimality condition in the Besov spaces under minimal regularity assumptions on the data. We pursue space-time discretization through finite differences and prove that the sequence of discrete optimal control problems converges to the original problem both with respect to functional and control. 4 authors · Nov 29, 2017
- Frechet Differentiability in Besov Spaces in the Optimal Control of Parabolic Free Boundary Problems We consider the inverse Stefan type free boundary problem, where information on the boundary heat flux and density of the sources are missing and must be found along with the temperature and the free boundary. We pursue optimal control framework where boundary heat flux, density of sources, and free boundary are components of the control vector. The optimality criteria consists of the minimization of the L_2-norm declinations of the temperature measurements at the final moment, phase transition temperature, and final position of the free boundary. We prove the Frechet differentiability in Besov spaces, and derive the formula for the Frechet differential under minimal regularity assumptions on the data. The result implies a necessary condition for optimal control and opens the way to the application of projective gradient methods in Besov spaces for the numerical solution of the inverse Stefan problem. 2 authors · Mar 31, 2016
- Optimal Control of Coefficients in Parabolic Free Boundary Problems Modeling Laser Ablation Inverse Stefan problem arising in modeling of laser ablation of biomedical tissues is analyzed, where information on the coefficients, heat flux on the fixed boundary, and density of heat sources are missing and must be found along with the temperature and free boundary. Optimal control framework is employed, where the missing data and the free boundary are components of the control vector, and optimality criteria are based on the final moment measurement of the temperature and position of the free boundary. Discretization by finite differences is pursued, and convergence of the discrete optimal control problems to the original problem is proven. 2 authors · Oct 23, 2017
- On the Incompressible Limit of Current-Vortex Sheets with or without Surface Tension This is the second part of the two-paper sequence, which aims to present a comprehensive study for current-vortex sheets with or without surface tension in ideal compressible magnetohydrodynamics (MHD). The results of this paper are two-fold: First, we establish the zero-surface-tension limit of compressible current-vortex sheets under certain stability conditions on the free interface; Second, when the two-phase flows are isentropic and the density functions converge to the same constant as Mach number goes to zero, we can drop the boundedness assumption (with respect to Mach number) on high-order time derivatives by combining the paradifferential approach applied to the evolution equation of the free interface, the structure of wave equations for the total pressure and the anisotropic Sobolev spaces with suitable weights of Mach number. To our knowledge, this is the first result that rigorously justifies the incompressible limit of free-surface MHD flows. Moreover, we actually present a robust framework for the low Mach number limit of vortex-sheet problems, which was never established in any previous works. 1 authors · May 1, 2024
- On the extremal length of the hyperbolic metric For any closed hyperbolic Riemann surface X, we show that the extremal length of the Liouville current is determined solely by the topology of \(X\). This confirms a conjecture of Mart\'inez-Granado and Thurston. We also obtain an upper bound, depending only on X, for the diameter of extremal metrics on X with area one. 1 authors · May 18, 2025
- Fluctuations of the connectivity threshold and largest nearest-neighbour link Consider a random uniform sample of n points in a compact region A of Euclidean d-space, d geq 2, with a smooth or (when d=2) polygonal boundary. Fix k bf N. Let T_{n,k} be the threshold r at which the geometric graph on these n vertices with distance parameter r becomes k-connected. We show that if d=2 then n (pi/|A|) T_{n,1}^2 - log n is asymptotically standard Gumbel. For (d,k) neq (2,1), it is n (theta_d/|A|) T_{n,k}^d - (2-2/d) log n - (4-2k-2/d) log log n that converges in distribution to a nondegenerate limit, where theta_d is the volume of the unit ball. The limit is Gumbel with scale parameter 2 except when (d,k)=(2,2) where the limit is two component extreme value distributed. The different cases reflect the fact that boundary effects are more more important in some cases than others. We also give similar results for the largest k-nearest neighbour link U_{n,k} in the sample, and show T_{n,k}=U_{n,k} with high probability. We provide estimates on rates of convergence and give similar results for Poisson samples in A. Finally, we give similar results even for non-uniform samples, with a less explicit sequence of centring constants. 2 authors · Jun 2, 2024
- Towards a Training Free Approach for 3D Scene Editing Text driven diffusion models have shown remarkable capabilities in editing images. However, when editing 3D scenes, existing works mostly rely on training a NeRF for 3D editing. Recent NeRF editing methods leverages edit operations by deploying 2D diffusion models and project these edits into 3D space. They require strong positional priors alongside text prompt to identify the edit location. These methods are operational on small 3D scenes and are more generalized to particular scene. They require training for each specific edit and cannot be exploited in real-time edits. To address these limitations, we propose a novel method, FreeEdit, to make edits in training free manner using mesh representations as a substitute for NeRF. Training-free methods are now a possibility because of the advances in foundation model's space. We leverage these models to bring a training-free alternative and introduce solutions for insertion, replacement and deletion. We consider insertion, replacement and deletion as basic blocks for performing intricate edits with certain combinations of these operations. Given a text prompt and a 3D scene, our model is capable of identifying what object should be inserted/replaced or deleted and location where edit should be performed. We also introduce a novel algorithm as part of FreeEdit to find the optimal location on grounding object for placement. We evaluate our model by comparing it with baseline models on a wide range of scenes using quantitative and qualitative metrics and showcase the merits of our method with respect to others. 5 authors · Dec 17, 2024
- Combining relatively hyperbolic groups over a complex of groups Given a complex of groups G(Y) = (G_sigma, psi_a, g_{a,b}) where all G_sigma are relatively hyperbolic, the psi_a are inclusions of full relatively quasiconvex subgroups, and the universal cover X is CAT(0) and delta--hyperbolic, we show pi_1(G(Y)) is relatively hyperbolic. The proof extends the work of Dahmani and Martin by constructing a model for the Bowditch boundary of pi_1(G(Y)). We prove the model is a compact metrizable space on which G acts as a geometrically finite convergence group, and a theorem of Yaman then implies the result. More generally, this model shows how any suitable action of a relatively hyperbolic group on a simply connected cell complex encodes a decomposition of the Bowditch boundary into the boundary of the cell complex and the boundaries of cell stabilizers. We hope this decomposition will be helpful in answering topological questions about Bowditch boundaries. 1 authors · Oct 2, 2025
- Incomplete RG: Hawking-Page transition, C-theorem and relevant scalar deformations of global AdS We discuss relevant scalar deformations of a holographic theory with a compact boundary. An example of such a theory would be the global AdS_4 with its spatially compact boundary S^2. To introduce a relevant deformation, we choose to turn on a time-independent and spatially homogeneous non-normalizable scalar operator with m^2 = -2. The finite size of a compact boundary cuts down the RG flow at a finite length scale leading to an incomplete RG flow to IR. We discuss a version of {\it incomplete} C-theorem and an {\it incomplete} attractor like mechanism. We discuss the implication of our results for entanglement entropy and geometric quantities like scalar curvature, volume and mass scale of fundamental excitation of the how these quantities increase or decrease (often monotonically) with the strength of the deformation. Thermal physics of a holographic theory defined on a compact boundary is more interesting than its non-compact counterpart. It is well known that with a compact boundary, there is a possibility of a first order Hawking-Page transition dual to a de-confinement phase transition. From a gravity perspective, a relevant deformation dumps negative energy inside the bulk, increasing the effective cosmological constant (Lambda) of the AdS. Dumping more negative energy in the bulk would make the HP transition harder and the corresponding HP transition temperature would increase. However, we have found the size of the BH at the transition temperature decreases. 3 authors · Dec 14, 2021
- A Simple Introduction to the SiMPL Method for Density-Based Topology Optimization We introduce a novel method for solving density-based topology optimization problems: Sigmoidal Mirror descent with a Projected Latent variable (SiMPL). The SiMPL method (pronounced as ``the simple method'') optimizes a design using only first-order derivative information of the objective function. The bound constraints on the density field are enforced with the help of the (negative) Fermi--Dirac entropy, which is also used to define a non-symmetric distance function called a Bregman divergence on the set of admissible designs. This Bregman divergence leads to a simple update rule that is further simplified with the help of a so-called latent variable. Because the SiMPL method involves discretizing the latent variable, it produces a sequence of pointwise-feasible iterates, even when high-order finite elements are used in the discretization. Numerical experiments demonstrate that the method outperforms other popular first-order optimization algorithms. To outline the general applicability of the technique, we include examples with (self-load) compliance minimization and compliant mechanism optimization problems. 4 authors · Nov 28, 2024