- Biomedical Document Clustering and Visualization based on the Concepts of Diseases Document clustering is a text mining technique used to provide better document search and browsing in digital libraries or online corpora. A lot of research has been done on biomedical document clustering that is based on using existing ontology. But, associations and co-occurrences of the medical concepts are not well represented by using ontology. In this research, a vector representation of concepts of diseases and similarity measurement between concepts are proposed. They identify the closest concepts of diseases in the context of a corpus. Each document is represented by using the vector space model. A weight scheme is proposed to consider both local content and associations between concepts. A Self-Organizing Map is used as document clustering algorithm. The vector projection and visualization features of SOM enable visualization and analysis of the clusters distributions and relationships on the two dimensional space. The experimental results show that the proposed document clustering framework generates meaningful clusters and facilitate visualization of the clusters based on the concepts of diseases. 2 authors · Oct 22, 2018
- Integrating Document Clustering and Topic Modeling Document clustering and topic modeling are two closely related tasks which can mutually benefit each other. Topic modeling can project documents into a topic space which facilitates effective document clustering. Cluster labels discovered by document clustering can be incorporated into topic models to extract local topics specific to each cluster and global topics shared by all clusters. In this paper, we propose a multi-grain clustering topic model (MGCTM) which integrates document clustering and topic modeling into a unified framework and jointly performs the two tasks to achieve the overall best performance. Our model tightly couples two components: a mixture component used for discovering latent groups in document collection and a topic model component used for mining multi-grain topics including local topics specific to each cluster and global topics shared across clusters.We employ variational inference to approximate the posterior of hidden variables and learn model parameters. Experiments on two datasets demonstrate the effectiveness of our model. 2 authors · Sep 26, 2013
- Efficient Sparse Spherical k-Means for Document Clustering Spherical k-Means is frequently used to cluster document collections because it performs reasonably well in many settings and is computationally efficient. However, the time complexity increases linearly with the number of clusters k, which limits the suitability of the algorithm for larger values of k depending on the size of the collection. Optimizations targeted at the Euclidean k-Means algorithm largely do not apply because the cosine distance is not a metric. We therefore propose an efficient indexing structure to improve the scalability of Spherical k-Means with respect to k. Our approach exploits the sparsity of the input vectors and the convergence behavior of k-Means to reduce the number of comparisons on each iteration significantly. 3 authors · Jul 30, 2021
1 ViDi: Descriptive Visual Data Clustering as Radiologist Assistant in COVID-19 Streamline Diagnostic In the light of the COVID-19 pandemic, deep learning methods have been widely investigated in detecting COVID-19 from chest X-rays. However, a more pragmatic approach to applying AI methods to a medical diagnosis is designing a framework that facilitates human-machine interaction and expert decision making. Studies have shown that categorization can play an essential rule in accelerating real-world decision making. Inspired by descriptive document clustering, we propose a domain-independent explanatory clustering framework to group contextually related instances and support radiologists' decision making. While most descriptive clustering approaches employ domain-specific characteristics to form meaningful clusters, we focus on model-level explanation as a more general-purpose element of every learning process to achieve cluster homogeneity. We employ DeepSHAP to generate homogeneous clusters in terms of disease severity and describe the clusters using favorable and unfavorable saliency maps, which visualize the class discriminating regions of an image. These human-interpretable maps complement radiologist knowledge to investigate the whole cluster at once. Besides, as part of this study, we evaluate a model based on VGG-19, which can identify COVID and pneumonia cases with a positive predictive value of 95% and 97%, respectively, comparable to the recent explainable approaches for COVID diagnosis. 3 authors · Nov 30, 2020
- Beyond 512 Tokens: Siamese Multi-depth Transformer-based Hierarchical Encoder for Long-Form Document Matching Many natural language processing and information retrieval problems can be formalized as the task of semantic matching. Existing work in this area has been largely focused on matching between short texts (e.g., question answering), or between a short and a long text (e.g., ad-hoc retrieval). Semantic matching between long-form documents, which has many important applications like news recommendation, related article recommendation and document clustering, is relatively less explored and needs more research effort. In recent years, self-attention based models like Transformers and BERT have achieved state-of-the-art performance in the task of text matching. These models, however, are still limited to short text like a few sentences or one paragraph due to the quadratic computational complexity of self-attention with respect to input text length. In this paper, we address the issue by proposing the Siamese Multi-depth Transformer-based Hierarchical (SMITH) Encoder for long-form document matching. Our model contains several innovations to adapt self-attention models for longer text input. In order to better capture sentence level semantic relations within a document, we pre-train the model with a novel masked sentence block language modeling task in addition to the masked word language modeling task used by BERT. Our experimental results on several benchmark datasets for long-form document matching show that our proposed SMITH model outperforms the previous state-of-the-art models including hierarchical attention, multi-depth attention-based hierarchical recurrent neural network, and BERT. Comparing to BERT based baselines, our model is able to increase maximum input text length from 512 to 2048. We will open source a Wikipedia based benchmark dataset, code and a pre-trained checkpoint to accelerate future research on long-form document matching. 5 authors · Apr 26, 2020
- Structured IB: Improving Information Bottleneck with Structured Feature Learning The Information Bottleneck (IB) principle has emerged as a promising approach for enhancing the generalization, robustness, and interpretability of deep neural networks, demonstrating efficacy across image segmentation, document clustering, and semantic communication. Among IB implementations, the IB Lagrangian method, employing Lagrangian multipliers, is widely adopted. While numerous methods for the optimizations of IB Lagrangian based on variational bounds and neural estimators are feasible, their performance is highly dependent on the quality of their design, which is inherently prone to errors. To address this limitation, we introduce Structured IB, a framework for investigating potential structured features. By incorporating auxiliary encoders to extract missing informative features, we generate more informative representations. Our experiments demonstrate superior prediction accuracy and task-relevant information preservation compared to the original IB Lagrangian method, even with reduced network size. 5 authors · Dec 11, 2024
- LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings Sentence embedding models play a key role in various Natural Language Processing tasks, such as in Topic Modeling, Document Clustering and Recommendation Systems. However, these models rely heavily on parallel data, which can be scarce for many low-resource languages, including Luxembourgish. This scarcity results in suboptimal performance of monolingual and cross-lingual sentence embedding models for these languages. To address this issue, we compile a relatively small but high-quality human-generated cross-lingual parallel dataset to train \tool, an enhanced sentence embedding model for Luxembourgish with strong cross-lingual capabilities. Additionally, we present evidence suggesting that including low-resource languages in parallel training datasets can be more advantageous for other low-resource languages than relying solely on high-resource language pairs. Furthermore, recognizing the lack of sentence embedding benchmarks for low-resource languages, we create a paraphrase detection benchmark specifically for Luxembourgish, aiming to partially fill this gap and promote further research. 4 authors · Dec 4, 2024
33 jina-embeddings-v3: Multilingual Embeddings With Task LoRA We introduce jina-embeddings-v3, a novel text embedding model with 570 million parameters, achieves state-of-the-art performance on multilingual data and long-context retrieval tasks, supporting context lengths of up to 8192 tokens. The model includes a set of task-specific Low-Rank Adaptation (LoRA) adapters to generate high-quality embeddings for query-document retrieval, clustering, classification, and text matching. Additionally, Matryoshka Representation Learning is integrated into the training process, allowing flexible truncation of embedding dimensions without compromising performance. Evaluation on the MTEB benchmark shows that jina-embeddings-v3 outperforms the latest proprietary embeddings from OpenAI and Cohere on English tasks, while achieving superior performance compared to multilingual-e5-large-instruct across all multilingual tasks. Jina AI · Sep 16, 2024 6
1 Repurposing Language Models into Embedding Models: Finding the Compute-Optimal Recipe Text embeddings are essential for many tasks, such as document retrieval, clustering, and semantic similarity assessment. In this paper, we study how to contrastively train text embedding models in a compute-optimal fashion, given a suite of pre-trained decoder-only language models. Our innovation is an algorithm that produces optimal configurations of model sizes, data quantities, and fine-tuning methods for text-embedding models at different computational budget levels. The resulting recipe, which we obtain through extensive experiments, can be used by practitioners to make informed design choices for their embedding models. Specifically, our findings suggest that full fine-tuning and low-rank adaptation fine-tuning produce optimal models at lower and higher computational budgets respectively. 6 authors · Jun 6, 2024
- Translation Transformers Rediscover Inherent Data Domains Many works proposed methods to improve the performance of Neural Machine Translation (NMT) models in a domain/multi-domain adaptation scenario. However, an understanding of how NMT baselines represent text domain information internally is still lacking. Here we analyze the sentence representations learned by NMT Transformers and show that these explicitly include the information on text domains, even after only seeing the input sentences without domains labels. Furthermore, we show that this internal information is enough to cluster sentences by their underlying domains without supervision. We show that NMT models produce clusters better aligned to the actual domains compared to pre-trained language models (LMs). Notably, when computed on document-level, NMT cluster-to-domain correspondence nears 100%. We use these findings together with an approach to NMT domain adaptation using automatically extracted domains. Whereas previous work relied on external LMs for text clustering, we propose re-using the NMT model as a source of unsupervised clusters. We perform an extensive experimental study comparing two approaches across two data scenarios, three language pairs, and both sentence-level and document-level clustering, showing equal or significantly superior performance compared to LMs. 3 authors · Sep 16, 2021
- Efficient Dynamic Clustering-Based Document Compression for Retrieval-Augmented-Generation Retrieval-Augmented Generation (RAG) has emerged as a widely adopted approach for knowledge integration during large language model (LLM) inference in recent years. However, current RAG implementations face challenges in effectively addressing noise, repetition and redundancy in retrieved content, primarily due to their limited ability to exploit fine-grained inter-document relationships. To address these limitations, we propose an Efficient Dynamic Clustering-based document Compression framework (EDC\textsuperscript{2-RAG}) that effectively utilizes latent inter-document relationships while simultaneously removing irrelevant information and redundant content. We validate our approach, built upon GPT-3.5, on widely used knowledge-QA and hallucination-detected datasets. The results show that this method achieves consistent performance improvements across various scenarios and experimental settings, demonstrating strong robustness and applicability. Our code and datasets can be found at https://github.com/Tsinghua-dhy/EDC-2-RAG. 6 authors · Apr 4, 2025
- A Novel Method of Fuzzy Topic Modeling based on Transformer Processing Topic modeling is admittedly a convenient way to monitor markets trend. Conventionally, Latent Dirichlet Allocation, LDA, is considered a must-do model to gain this type of information. By given the merit of deducing keyword with token conditional probability in LDA, we can know the most possible or essential topic. However, the results are not intuitive because the given topics cannot wholly fit human knowledge. LDA offers the first possible relevant keywords, which also brings out another problem of whether the connection is reliable based on the statistic possibility. It is also hard to decide the topic number manually in advance. As the booming trend of using fuzzy membership to cluster and using transformers to embed words, this work presents the fuzzy topic modeling based on soft clustering and document embedding from state-of-the-art transformer-based model. In our practical application in a press release monitoring, the fuzzy topic modeling gives a more natural result than the traditional output from LDA. 5 authors · Sep 18, 2023
- Improving Document Representations by Generating Pseudo Query Embeddings for Dense Retrieval Recently, the retrieval models based on dense representations have been gradually applied in the first stage of the document retrieval tasks, showing better performance than traditional sparse vector space models. To obtain high efficiency, the basic structure of these models is Bi-encoder in most cases. However, this simple structure may cause serious information loss during the encoding of documents since the queries are agnostic. To address this problem, we design a method to mimic the queries on each of the documents by an iterative clustering process and represent the documents by multiple pseudo queries (i.e., the cluster centroids). To boost the retrieval process using approximate nearest neighbor search library, we also optimize the matching function with a two-step score calculation procedure. Experimental results on several popular ranking and QA datasets show that our model can achieve state-of-the-art results. 6 authors · May 8, 2021
- Is Neural Topic Modelling Better than Clustering? An Empirical Study on Clustering with Contextual Embeddings for Topics Recent work incorporates pre-trained word embeddings such as BERT embeddings into Neural Topic Models (NTMs), generating highly coherent topics. However, with high-quality contextualized document representations, do we really need sophisticated neural models to obtain coherent and interpretable topics? In this paper, we conduct thorough experiments showing that directly clustering high-quality sentence embeddings with an appropriate word selecting method can generate more coherent and diverse topics than NTMs, achieving also higher efficiency and simplicity. 4 authors · Apr 21, 2022
- Learning Discrete Representations via Constrained Clustering for Effective and Efficient Dense Retrieval Dense Retrieval (DR) has achieved state-of-the-art first-stage ranking effectiveness. However, the efficiency of most existing DR models is limited by the large memory cost of storing dense vectors and the time-consuming nearest neighbor search (NNS) in vector space. Therefore, we present RepCONC, a novel retrieval model that learns discrete Representations via CONstrained Clustering. RepCONC jointly trains dual-encoders and the Product Quantization (PQ) method to learn discrete document representations and enables fast approximate NNS with compact indexes. It models quantization as a constrained clustering process, which requires the document embeddings to be uniformly clustered around the quantization centroids and supports end-to-end optimization of the quantization method and dual-encoders. We theoretically demonstrate the importance of the uniform clustering constraint in RepCONC and derive an efficient approximate solution for constrained clustering by reducing it to an instance of the optimal transport problem. Besides constrained clustering, RepCONC further adopts a vector-based inverted file system (IVF) to support highly efficient vector search on CPUs. Extensive experiments on two popular ad-hoc retrieval benchmarks show that RepCONC achieves better ranking effectiveness than competitive vector quantization baselines under different compression ratio settings. It also substantially outperforms a wide range of existing retrieval models in terms of retrieval effectiveness, memory efficiency, and time efficiency. 6 authors · Oct 12, 2021
- A Large-Scale Multi-Document Summarization Dataset from the Wikipedia Current Events Portal Multi-document summarization (MDS) aims to compress the content in large document collections into short summaries and has important applications in story clustering for newsfeeds, presentation of search results, and timeline generation. However, there is a lack of datasets that realistically address such use cases at a scale large enough for training supervised models for this task. This work presents a new dataset for MDS that is large both in the total number of document clusters and in the size of individual clusters. We build this dataset by leveraging the Wikipedia Current Events Portal (WCEP), which provides concise and neutral human-written summaries of news events, with links to external source articles. We also automatically extend these source articles by looking for related articles in the Common Crawl archive. We provide a quantitative analysis of the dataset and empirical results for several state-of-the-art MDS techniques. 5 authors · May 20, 2020
17 Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA Long-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows. Meanwhile, benchmarks for evaluating long-context LLMs are gradually catching up. However, existing benchmarks employ irrelevant noise texts to artificially extend the length of test cases, diverging from the real-world scenarios of long-context applications. To bridge this gap, we propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA). Unlike typical document QA, in Loong's test cases, each document is relevant to the final answer, ignoring any document will lead to the failure of the answer. Furthermore, Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning, to facilitate a more realistic and comprehensive evaluation of long-context understanding. Extensive experiments indicate that existing long-context language models still exhibit considerable potential for enhancement. Retrieval augmented generation (RAG) achieves poor performance, demonstrating that Loong can reliably assess the model's long-context modeling capabilities. 14 authors · Jun 25, 2024 1
- BN-HTRd: A Benchmark Dataset for Document Level Offline Bangla Handwritten Text Recognition (HTR) and Line Segmentation We introduce a new dataset for offline Handwritten Text Recognition (HTR) from images of Bangla scripts comprising words, lines, and document-level annotations. The BN-HTRd dataset is based on the BBC Bangla News corpus, meant to act as ground truth texts. These texts were subsequently used to generate the annotations that were filled out by people with their handwriting. Our dataset includes 788 images of handwritten pages produced by approximately 150 different writers. It can be adopted as a basis for various handwriting classification tasks such as end-to-end document recognition, word-spotting, word or line segmentation, and so on. We also propose a scheme to segment Bangla handwritten document images into corresponding lines in an unsupervised manner. Our line segmentation approach takes care of the variability involved in different writing styles, accurately segmenting complex handwritten text lines of curvilinear nature. Along with a bunch of pre-processing and morphological operations, both Hough line and circle transforms were employed to distinguish different linear components. In order to arrange those components into their corresponding lines, we followed an unsupervised clustering approach. The average success rate of our segmentation technique is 81.57% in terms of FM metrics (similar to F-measure) with a mean Average Precision (mAP) of 0.547. 5 authors · May 29, 2022
- Deep Representation Learning for Clustering of Health Tweets Twitter has been a prominent social media platform for mining population-level health data and accurate clustering of health-related tweets into topics is important for extracting relevant health insights. In this work, we propose deep convolutional autoencoders for learning compact representations of health-related tweets, further to be employed in clustering. We compare our method to several conventional tweet representation methods including bag-of-words, term frequency-inverse document frequency, Latent Dirichlet Allocation and Non-negative Matrix Factorization with 3 different clustering algorithms. Our results show that the clustering performance using proposed representation learning scheme significantly outperforms that of conventional methods for all experiments of different number of clusters. In addition, we propose a constraint on the learned representations during the neural network training in order to further enhance the clustering performance. All in all, this study introduces utilization of deep neural network-based architectures, i.e., deep convolutional autoencoders, for learning informative representations of health-related tweets. 1 authors · Dec 24, 2018
1 S2 Chunking: A Hybrid Framework for Document Segmentation Through Integrated Spatial and Semantic Analysis Document chunking is a critical task in natural language processing (NLP) that involves dividing a document into meaningful segments. Traditional methods often rely solely on semantic analysis, ignoring the spatial layout of elements, which is crucial for understanding relationships in complex documents. This paper introduces a novel hybrid approach that combines layout structure, semantic analysis, and spatial relationships to enhance the cohesion and accuracy of document chunks. By leveraging bounding box information (bbox) and text embeddings, our method constructs a weighted graph representation of document elements, which is then clustered using spectral clustering. Experimental results demonstrate that this approach outperforms traditional methods, particularly in documents with diverse layouts such as reports, articles, and multi-column designs. The proposed method also ensures that no chunk exceeds a specified token length, making it suitable for use cases where token limits are critical (e.g., language models with input size limitations) 1 authors · Jan 8, 2025
5 Behavioral Fingerprinting of Large Language Models Current benchmarks for Large Language Models (LLMs) primarily focus on performance metrics, often failing to capture the nuanced behavioral characteristics that differentiate them. This paper introduces a novel ``Behavioral Fingerprinting'' framework designed to move beyond traditional evaluation by creating a multi-faceted profile of a model's intrinsic cognitive and interactive styles. Using a curated Diagnostic Prompt Suite and an innovative, automated evaluation pipeline where a powerful LLM acts as an impartial judge, we analyze eighteen models across capability tiers. Our results reveal a critical divergence in the LLM landscape: while core capabilities like abstract and causal reasoning are converging among top models, alignment-related behaviors such as sycophancy and semantic robustness vary dramatically. We further document a cross-model default persona clustering (ISTJ/ESTJ) that likely reflects common alignment incentives. Taken together, this suggests that a model's interactive nature is not an emergent property of its scale or reasoning power, but a direct consequence of specific, and highly variable, developer alignment strategies. Our framework provides a reproducible and scalable methodology for uncovering these deep behavioral differences. Project: https://github.com/JarvisPei/Behavioral-Fingerprinting 8 authors · Sep 2, 2025 3
- DKDS: A Benchmark Dataset of Degraded Kuzushiji Documents with Seals for Detection and Binarization Kuzushiji, a pre-modern Japanese cursive script, can currently be read and understood by only a few thousand trained experts in Japan. With the rapid development of deep learning, researchers have begun applying Optical Character Recognition (OCR) techniques to transcribe Kuzushiji into modern Japanese. Although existing OCR methods perform well on clean pre-modern Japanese documents written in Kuzushiji, they often fail to consider various types of noise, such as document degradation and seals, which significantly affect recognition accuracy. To the best of our knowledge, no existing dataset specifically addresses these challenges. To address this gap, we introduce the Degraded Kuzushiji Documents with Seals (DKDS) dataset as a new benchmark for related tasks. We describe the dataset construction process, which required the assistance of a trained Kuzushiji expert, and define two benchmark tracks: (1) text and seal detection and (2) document binarization. For the text and seal detection track, we provide baseline results using multiple versions of the You Only Look Once (YOLO) models for detecting Kuzushiji characters and seals. For the document binarization track, we present baseline results from traditional binarization algorithms, traditional algorithms combined with K-means clustering, and Generative Adversarial Network (GAN)-based methods. The DKDS dataset and the implementation code for baseline methods are available at https://ruiyangju.github.io/DKDS. 4 authors · Nov 12, 2025
47 On the Origin of LLMs: An Evolutionary Tree and Graph for 15,821 Large Language Models Since late 2022, Large Language Models (LLMs) have become very prominent with LLMs like ChatGPT and Bard receiving millions of users. Hundreds of new LLMs are announced each week, many of which are deposited to Hugging Face, a repository of machine learning models and datasets. To date, nearly 16,000 Text Generation models have been uploaded to the site. Given the huge influx of LLMs, it is of interest to know which LLM backbones, settings, training methods, and families are popular or trending. However, there is no comprehensive index of LLMs available. We take advantage of the relatively systematic nomenclature of Hugging Face LLMs to perform hierarchical clustering and identify communities amongst LLMs using n-grams and term frequency-inverse document frequency. Our methods successfully identify families of LLMs and accurately cluster LLMs into meaningful subgroups. We present a public web application to navigate and explore Constellation, our atlas of 15,821 LLMs. Constellation rapidly generates a variety of visualizations, namely dendrograms, graphs, word clouds, and scatter plots. Constellation is available at the following link: https://constellation.sites.stanford.edu/. 2 authors · Jul 19, 2023 8
- Latent Tree Models for Hierarchical Topic Detection We present a novel method for hierarchical topic detection where topics are obtained by clustering documents in multiple ways. Specifically, we model document collections using a class of graphical models called hierarchical latent tree models (HLTMs). The variables at the bottom level of an HLTM are observed binary variables that represent the presence/absence of words in a document. The variables at other levels are binary latent variables, with those at the lowest latent level representing word co-occurrence patterns and those at higher levels representing co-occurrence of patterns at the level below. Each latent variable gives a soft partition of the documents, and document clusters in the partitions are interpreted as topics. Latent variables at high levels of the hierarchy capture long-range word co-occurrence patterns and hence give thematically more general topics, while those at low levels of the hierarchy capture short-range word co-occurrence patterns and give thematically more specific topics. Unlike LDA-based topic models, HLTMs do not refer to a document generation process and use word variables instead of token variables. They use a tree structure to model the relationships between topics and words, which is conducive to the discovery of meaningful topics and topic hierarchies. 6 authors · May 21, 2016