new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 13

Chain of Mindset: Reasoning with Adaptive Cognitive Modes

Human problem-solving is never the repetition of a single mindset, by which we mean a distinct mode of cognitive processing. When tackling a specific task, we do not rely on a single mindset; instead, we integrate multiple mindsets within the single solution process. However, existing LLM reasoning methods fall into a common trap: they apply the same fixed mindset across all steps, overlooking that different stages of solving the same problem require fundamentally different mindsets. This single-minded assumption prevents models from reaching the next level of intelligence. To address this limitation, we propose Chain of Mindset (CoM), a training-free agentic framework that enables step-level adaptive mindset orchestration. CoM decomposes reasoning into four functionally heterogeneous mindsets: Spatial, Convergent, Divergent, and Algorithmic. A Meta-Agent dynamically selects the optimal mindset based on the evolving reasoning state, while a bidirectional Context Gate filters cross-module information flow to maintain effectiveness and efficiency. Experiments across six challenging benchmarks spanning mathematics, code generation, scientific QA, and spatial reasoning demonstrate that CoM achieves state-of-the-art performance, outperforming the strongest baseline by 4.96\% and 4.72\% in overall accuracy on Qwen3-VL-32B-Instruct and Gemini-2.0-Flash, while balancing reasoning efficiency. Our code is publicly available at https://github.com/QuantaAlpha/chain-of-mindset{https://github.com/QuantaAlpha/chain-of-mindset}.

QuantaAlpha QuantaAlpha
·
Feb 10 2

Alchemist: Unlocking Efficiency in Text-to-Image Model Training via Meta-Gradient Data Selection

Recent advances in Text-to-Image (T2I) generative models, such as Imagen, Stable Diffusion, and FLUX, have led to remarkable improvements in visual quality. However, their performance is fundamentally limited by the quality of training data. Web-crawled and synthetic image datasets often contain low-quality or redundant samples, which lead to degraded visual fidelity, unstable training, and inefficient computation. Hence, effective data selection is crucial for improving data efficiency. Existing approaches rely on costly manual curation or heuristic scoring based on single-dimensional features in Text-to-Image data filtering. Although meta-learning based method has been explored in LLM, there is no adaptation for image modalities. To this end, we propose **Alchemist**, a meta-gradient-based framework to select a suitable subset from large-scale text-image data pairs. Our approach automatically learns to assess the influence of each sample by iteratively optimizing the model from a data-centric perspective. Alchemist consists of two key stages: data rating and data pruning. We train a lightweight rater to estimate each sample's influence based on gradient information, enhanced with multi-granularity perception. We then use the Shift-Gsampling strategy to select informative subsets for efficient model training. Alchemist is the first automatic, scalable, meta-gradient-based data selection framework for Text-to-Image model training. Experiments on both synthetic and web-crawled datasets demonstrate that Alchemist consistently improves visual quality and downstream performance. Training on an Alchemist-selected 50% of the data can outperform training on the full dataset.

  • 8 authors
·
Dec 18, 2025 2