new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Accelerating Training Speed of Tiny Recursive Models with Curriculum Guided Adaptive Recursion

Background: Recursive reasoning models achieve strong performance through iterative refinement, allowing small networks to match large language models. However, training is computationally expensive, often requiring 36 GPU-hours for Sudoku extreme. Existing models use fixed recursion depth and uniform supervision weighting, leading to inefficient training. Objectives: We propose CGAR (Curriculum-Guided Adaptive Recursion), applying curriculum learning to architectural depth. CGAR introduces Progressive Depth Curriculum (PDC) to dynamically adjust recursion depth and Hierarchical Supervision Weighting (HSW) to apply exponentially decaying importance to supervision steps. Methods: PDC implements a three-stage schedule transitioning from shallow (2, 1) to full depth (6, 3) configurations, providing 41.4% FLOPs reduction. HSW applies exponential decay to supervision steps, achieving 40% gradient variance reduction and accelerated convergence. Results: On Sudoku-Extreme, CGAR achieves 1.71x training speedup (10.93 to 6.38 hours) with only a 0.63% accuracy drop (86.65% to 86.02%). PDC alone achieves 2.26x speedup with 85.47% accuracy, showing a Pareto improvement in efficiency and quality. HSW provides 1.61x speedup. CGAR-trained models show superior inference efficiency with 100% halting accuracy and 11% fewer reasoning steps. Conclusions: CGAR enables efficient training of recursive models on modest hardware. By treating depth as a scheduled parameter, it achieves substantial savings and prevents overfitting, making these models practical for neurosymbolic AI and program synthesis. https://github.com/Kaleemullahqasim/CGAR and huggingface.co/Kaleemullah/trm-cgar-sudoku.

  • 2 authors
·
Nov 11, 2025

PRefLexOR: Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning and Agentic Thinking

PRefLexOR (Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning) combines preference optimization with concepts from Reinforcement Learning to enable models to self-teach through iterative reasoning improvements. We propose a recursive learning approach that engages the model in multi-step reasoning, revisiting, and refining intermediate steps before producing a final output in training and inference phases. Through multiple training stages, the model first learns to align its reasoning with accurate decision paths by optimizing the log odds between preferred and non-preferred responses. During this process, PRefLexOR builds a dynamic knowledge graph by generating questions from random text chunks and retrieval-augmentation to contextualize relevant details from the entire training corpus. In the second stage, preference optimization enhances model performance by using rejection sampling to fine-tune reasoning quality by continually producing in-situ training data while masking the reasoning steps. Recursive optimization within a thinking token framework introduces iterative feedback loops, where the model refines reasoning, achieving deeper coherence, consistency, and adaptability. Implemented in small language models with only 3 billion parameters, we should that even tiny models can iteratively teach themselves to reason with greater depth and reflectivity. Our implementation is straightforward and can be incorporated into any existing pretrained LLM. We focus our examples on applications in biological materials science and demonstrate the method in a variety of case studies that range from in-domain to cross-domain applications. Using reasoning strategies that include thinking and reflection modalities we build a multi-agent recursive self-improving inference approach to successively improve responses via repeated sampling in inference time.

  • 1 authors
·
Oct 16, 2024