- BiDeV: Bilateral Defusing Verification for Complex Claim Fact-Checking Complex claim fact-checking performs a crucial role in disinformation detection. However, existing fact-checking methods struggle with claim vagueness, specifically in effectively handling latent information and complex relations within claims. Moreover, evidence redundancy, where nonessential information complicates the verification process, remains a significant issue. To tackle these limitations, we propose Bilateral Defusing Verification (BiDeV), a novel fact-checking working-flow framework integrating multiple role-played LLMs to mimic the human-expert fact-checking process. BiDeV consists of two main modules: Vagueness Defusing identifies latent information and resolves complex relations to simplify the claim, and Redundancy Defusing eliminates redundant content to enhance the evidence quality. Extensive experimental results on two widely used challenging fact-checking benchmarks (Hover and Feverous-s) demonstrate that our BiDeV can achieve the best performance under both gold and open settings. This highlights the effectiveness of BiDeV in handling complex claims and ensuring precise fact-checking 7 authors · Feb 22, 2025
1 Natural Logic-guided Autoregressive Multi-hop Document Retrieval for Fact Verification A key component of fact verification is thevevidence retrieval, often from multiple documents. Recent approaches use dense representations and condition the retrieval of each document on the previously retrieved ones. The latter step is performed over all the documents in the collection, requiring storing their dense representations in an index, thus incurring a high memory footprint. An alternative paradigm is retrieve-and-rerank, where documents are retrieved using methods such as BM25, their sentences are reranked, and further documents are retrieved conditioned on these sentences, reducing the memory requirements. However, such approaches can be brittle as they rely on heuristics and assume hyperlinks between documents. We propose a novel retrieve-and-rerank method for multi-hop retrieval, that consists of a retriever that jointly scores documents in the knowledge source and sentences from previously retrieved documents using an autoregressive formulation and is guided by a proof system based on natural logic that dynamically terminates the retrieval process if the evidence is deemed sufficient. This method is competitive with current state-of-the-art methods on FEVER, HoVer and FEVEROUS-S, while using 5 to 10 times less memory than competing systems. Evaluation on an adversarial dataset indicates improved stability of our approach compared to commonly deployed threshold-based methods. Finally, the proof system helps humans predict model decisions correctly more often than using the evidence alone. 2 authors · Dec 10, 2022
- FEVEROUS: Fact Extraction and VERification Over Unstructured and Structured information Fact verification has attracted a lot of attention in the machine learning and natural language processing communities, as it is one of the key methods for detecting misinformation. Existing large-scale benchmarks for this task have focused mostly on textual sources, i.e. unstructured information, and thus ignored the wealth of information available in structured formats, such as tables. In this paper we introduce a novel dataset and benchmark, Fact Extraction and VERification Over Unstructured and Structured information (FEVEROUS), which consists of 87,026 verified claims. Each claim is annotated with evidence in the form of sentences and/or cells from tables in Wikipedia, as well as a label indicating whether this evidence supports, refutes, or does not provide enough information to reach a verdict. Furthermore, we detail our efforts to track and minimize the biases present in the dataset and could be exploited by models, e.g. being able to predict the label without using evidence. Finally, we develop a baseline for verifying claims against text and tables which predicts both the correct evidence and verdict for 18% of the claims. 8 authors · Jun 10, 2021
3 Detecting Corpus-Level Knowledge Inconsistencies in Wikipedia with Large Language Models Wikipedia is the largest open knowledge corpus, widely used worldwide and serving as a key resource for training large language models (LLMs) and retrieval-augmented generation (RAG) systems. Ensuring its accuracy is therefore critical. But how accurate is Wikipedia, and how can we improve it? We focus on inconsistencies, a specific type of factual inaccuracy, and introduce the task of corpus-level inconsistency detection. We present CLAIRE, an agentic system that combines LLM reasoning with retrieval to surface potentially inconsistent claims along with contextual evidence for human review. In a user study with experienced Wikipedia editors, 87.5% reported higher confidence when using CLAIRE, and participants identified 64.7% more inconsistencies in the same amount of time. Combining CLAIRE with human annotation, we contribute WIKICOLLIDE, the first benchmark of real Wikipedia inconsistencies. Using random sampling with CLAIRE-assisted analysis, we find that at least 3.3% of English Wikipedia facts contradict another fact, with inconsistencies propagating into 7.3% of FEVEROUS and 4.0% of AmbigQA examples. Benchmarking strong baselines on this dataset reveals substantial headroom: the best fully automated system achieves an AUROC of only 75.1%. Our results show that contradictions are a measurable component of Wikipedia and that LLM-based systems like CLAIRE can provide a practical tool to help editors improve knowledge consistency at scale. Stanford Open Virtual Assistant Lab (OVAL) · Sep 27, 2025 1
4 AssertBench: A Benchmark for Evaluating Self-Assertion in Large Language Models Recent benchmarks have probed factual consistency and rhetorical robustness in Large Language Models (LLMs). However, a knowledge gap exists regarding how directional framing of factually true statements influences model agreement, a common scenario for LLM users. AssertBench addresses this by sampling evidence-supported facts from FEVEROUS, a fact verification dataset. For each (evidence-backed) fact, we construct two framing prompts: one where the user claims the statement is factually correct, and another where the user claims it is incorrect. We then record the model's agreement and reasoning. The desired outcome is that the model asserts itself, maintaining consistent truth evaluation across both framings, rather than switching its evaluation to agree with the user. AssertBench isolates framing-induced variability from the model's underlying factual knowledge by stratifying results based on the model's accuracy on the same claims when presented neutrally. In doing so, this benchmark aims to measure an LLM's ability to "stick to its guns" when presented with contradictory user assertions about the same fact. The complete source code is available at https://github.com/achowd32/assert-bench. 2 authors · Jun 8, 2025 2
2 Table Meets LLM: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study Large language models (LLMs) are becoming attractive as few-shot reasoners to solve Natural Language (NL)-related tasks. However, the understanding of their capability to process structured data like tables remains an under-explored area. While tables can be serialized as input for LLMs, there is a lack of comprehensive studies on whether LLMs genuinely comprehend this data. In this paper, we try to understand this by designing a benchmark to evaluate the structural understanding capabilities of LLMs through seven distinct tasks, e.g., cell lookup, row retrieval and size detection. Specially, we perform a series of evaluations on the recent most advanced LLM models, GPT-3.5 and GPT-4 and observe that performance varied with different input choices, including table input format, content order, role prompting, and partition marks. Drawing from the insights gained through the benchmark evaluations, we propose self-augmentation for effective structural prompting, such as critical value / range identification using internal knowledge of LLMs. When combined with carefully chosen input choices, these structural prompting methods lead to promising improvements in LLM performance on a variety of tabular tasks, e.g., TabFact(uparrow2.31%), HybridQA(uparrow2.13%), SQA(uparrow2.72%), Feverous(uparrow0.84%), and ToTTo(uparrow5.68%). We believe that our open source benchmark and proposed prompting methods can serve as a simple yet generic selection for future research. The code and data of this paper will be temporality released at https://anonymous.4open.science/r/StructuredLLM-76F3/README.md and will be replaced with an official one at https://github.com/microsoft/TableProvider later. Microsoft · May 22, 2023
- Large Language Models are few(1)-shot Table Reasoners Recent literature has shown that large language models (LLMs) are generally excellent few-shot reasoners to solve text reasoning tasks. However, the capability of LLMs on table reasoning tasks is yet to be explored. In this paper, we aim at understanding how well LLMs can perform table-related tasks with few-shot in-context learning. Specifically, we evaluated LLMs on popular table QA and fact verification datasets like WikiTableQuestion, FetaQA, TabFact, and FEVEROUS and found that LLMs are competent at complex reasoning over table structures, though these models are not pre-trained on any table corpus. When combined with `chain of thoughts' prompting, LLMs can achieve very strong performance with only a 1-shot demonstration, even on par with some SoTA models. We show that LLMs are even more competent at generating comprehensive long-form answers on FetaQA than tuned T5-large. We further manually studied the reasoning chains elicited from LLMs and found that these reasoning chains are highly consistent with the underlying semantic form. We believe that LLMs can serve as a simple yet generic baseline for future research. The code and data are released in https://github.com/wenhuchen/TableCoT. 1 authors · Oct 13, 2022