- ViolinDiff: Enhancing Expressive Violin Synthesis with Pitch Bend Conditioning Modeling the natural contour of fundamental frequency (F0) plays a critical role in music audio synthesis. However, transcribing and managing multiple F0 contours in polyphonic music is challenging, and explicit F0 contour modeling has not yet been explored for polyphonic instrumental synthesis. In this paper, we present ViolinDiff, a two-stage diffusion-based synthesis framework. For a given violin MIDI file, the first stage estimates the F0 contour as pitch bend information, and the second stage generates mel spectrogram incorporating these expressive details. The quantitative metrics and listening test results show that the proposed model generates more realistic violin sounds than the model without explicit pitch bend modeling. Audio samples are available online: daewoung.github.io/ViolinDiff-Demo. 3 authors · Sep 19, 2024
- PitchFlower: A flow-based neural audio codec with pitch controllability We present PitchFlower, a flow-based neural audio codec with explicit pitch controllability. Our approach enforces disentanglement through a simple perturbation: during training, F0 contours are flattened and randomly shifted, while the true F0 is provided as conditioning. A vector-quantization bottleneck prevents pitch recovery, and a flow-based decoder generates high quality audio. Experiments show that PitchFlower achieves more accurate pitch control than WORLD at much higher audio quality, and outperforms SiFiGAN in controllability while maintaining comparable quality. Beyond pitch, this framework provides a simple and extensible path toward disentangling other speech attributes. 3 authors · Oct 29, 2025
- Real-Time Pitch/F0 Detection Using Spectrogram Images and Convolutional Neural Networks This paper presents a novel approach to detect F0 through Convolutional Neural Networks and image processing techniques to directly estimate pitch from spectrogram images. Our new approach demonstrates a very good detection accuracy; a total of 92% of predicted pitch contours have strong or moderate correlations to the true pitch contours. Furthermore, the experimental comparison between our new approach and other state-of-the-art CNN methods reveals that our approach can enhance the detection rate by approximately 5% across various Signal-to-Noise Ratio conditions. 2 authors · Apr 8, 2025