new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 19

Breaking Focus: Contextual Distraction Curse in Large Language Models

Recent advances in Large Language Models (LLMs) have revolutionized generative systems, achieving excellent performance across diverse domains. Although these models perform well in controlled environments, their real-world applications frequently encounter inputs containing both essential and irrelevant details. Our investigation has revealed a critical vulnerability in LLMs, which we term Contextual Distraction Vulnerability (CDV). This phenomenon arises when models fail to maintain consistent performance on questions modified with semantically coherent but irrelevant context. To systematically investigate this vulnerability, we propose an efficient tree-based search methodology to automatically generate CDV examples. Our approach successfully generates CDV examples across four datasets, causing an average performance degradation of approximately 45% in state-of-the-art LLMs. To address this critical issue, we explore various mitigation strategies and find that post-targeted training approaches can effectively enhance model robustness against contextual distractions. Our findings highlight the fundamental nature of CDV as an ability-level challenge rather than a knowledge-level issue since models demonstrate the necessary knowledge by answering correctly in the absence of distractions. This calls the community's attention to address CDV during model development to ensure reliability. The code is available at https://github.com/wyf23187/LLM_CDV.

  • 9 authors
·
Feb 3, 2025

Systematic Analysis of MCP Security

The Model Context Protocol (MCP) has emerged as a universal standard that enables AI agents to seamlessly connect with external tools, significantly enhancing their functionality. However, while MCP brings notable benefits, it also introduces significant vulnerabilities, such as Tool Poisoning Attacks (TPA), where hidden malicious instructions exploit the sycophancy of large language models (LLMs) to manipulate agent behavior. Despite these risks, current academic research on MCP security remains limited, with most studies focusing on narrow or qualitative analyses that fail to capture the diversity of real-world threats. To address this gap, we present the MCP Attack Library (MCPLIB), which categorizes and implements 31 distinct attack methods under four key classifications: direct tool injection, indirect tool injection, malicious user attacks, and LLM inherent attack. We further conduct a quantitative analysis of the efficacy of each attack. Our experiments reveal key insights into MCP vulnerabilities, including agents' blind reliance on tool descriptions, sensitivity to file-based attacks, chain attacks exploiting shared context, and difficulty distinguishing external data from executable commands. These insights, validated through attack experiments, underscore the urgency for robust defense strategies and informed MCP design. Our contributions include 1) constructing a comprehensive MCP attack taxonomy, 2) introducing a unified attack framework MCPLIB, and 3) conducting empirical vulnerability analysis to enhance MCP security mechanisms. This work provides a foundational framework, supporting the secure evolution of MCP ecosystems.

  • 8 authors
·
Aug 17, 2025

Lost in the Noise: How Reasoning Models Fail with Contextual Distractors

Recent advances in reasoning models and agentic AI systems have led to an increased reliance on diverse external information. However, this shift introduces input contexts that are inherently noisy, a reality that current sanitized benchmarks fail to capture. We introduce NoisyBench, a comprehensive benchmark that systematically evaluates model robustness across 11 datasets in RAG, reasoning, alignment, and tool-use tasks against diverse noise types, including random documents, irrelevant chat histories, and hard negative distractors. Our evaluation reveals a catastrophic performance drop of up to 80% in state-of-the-art models when faced with contextual distractors. Crucially, we find that agentic workflows often amplify these errors by over-trusting noisy tool outputs, and distractors can trigger emergent misalignment even without adversarial intent. We find that prompting, context engineering, SFT, and outcome-reward only RL fail to ensure robustness; in contrast, our proposed Rationale-Aware Reward (RARE) significantly strengthens resilience by incentivizing the identification of helpful information within noise. Finally, we uncover an inverse scaling trend where increased test-time computation leads to worse performance in noisy settings and demonstrate via attention visualization that models disproportionately focus on distractor tokens, providing vital insights for building the next generation of robust, reasoning-capable agents.

kaist-ai KAIST AI
·
Jan 12 3

Context Misleads LLMs: The Role of Context Filtering in Maintaining Safe Alignment of LLMs

While Large Language Models (LLMs) have shown significant advancements in performance, various jailbreak attacks have posed growing safety and ethical risks. Malicious users often exploit adversarial context to deceive LLMs, prompting them to generate responses to harmful queries. In this study, we propose a new defense mechanism called Context Filtering model, an input pre-processing method designed to filter out untrustworthy and unreliable context while identifying the primary prompts containing the real user intent to uncover concealed malicious intent. Given that enhancing the safety of LLMs often compromises their helpfulness, potentially affecting the experience of benign users, our method aims to improve the safety of the LLMs while preserving their original performance. We evaluate the effectiveness of our model in defending against jailbreak attacks through comparative analysis, comparing our approach with state-of-the-art defense mechanisms against six different attacks and assessing the helpfulness of LLMs under these defenses. Our model demonstrates its ability to reduce the Attack Success Rates of jailbreak attacks by up to 88% while maintaining the original LLMs' performance, achieving state-of-the-art Safety and Helpfulness Product results. Notably, our model is a plug-and-play method that can be applied to all LLMs, including both white-box and black-box models, to enhance their safety without requiring any fine-tuning of the models themselves. We will make our model publicly available for research purposes.

  • 2 authors
·
Aug 8, 2025

Context Engineering for Trustworthiness: Rescorla Wagner Steering Under Mixed and Inappropriate Contexts

Incorporating external context can significantly enhance the response quality of Large Language Models (LLMs). However, real-world contexts often mix relevant information with disproportionate inappropriate content, posing reliability risks. How do LLMs process and prioritize mixed context? To study this, we introduce the Poisoned Context Testbed, pairing queries with real-world contexts containing relevant and inappropriate content. Inspired by associative learning in animals, we adapt the Rescorla-Wagner (RW) model from neuroscience to quantify how competing contextual signals influence LLM outputs. Our adapted model reveals a consistent behavioral pattern: LLMs exhibit a strong tendency to incorporate information that is less prevalent in the context. This susceptibility is harmful in real-world settings, where small amounts of inappropriate content can substantially degrade response quality. Empirical evaluations on our testbed further confirm this vulnerability. To tackle this, we introduce RW-Steering, a two-stage finetuning-based approach that enables the model to internally identify and ignore inappropriate signals. Unlike prior methods that rely on extensive supervision across diverse context mixtures, RW-Steering generalizes robustly across varying proportions of inappropriate content. Experiments show that our best fine-tuned model improves response quality by 39.8% and reverses the undesirable behavior curve, establishing RW-Steering as a robust, generalizable context engineering solution for improving LLM safety in real-world use.

  • 9 authors
·
Sep 1, 2025 3

DeceptionBench: A Comprehensive Benchmark for AI Deception Behaviors in Real-world Scenarios

Despite the remarkable advances of Large Language Models (LLMs) across diverse cognitive tasks, the rapid enhancement of these capabilities also introduces emergent deceptive behaviors that may induce severe risks in high-stakes deployments. More critically, the characterization of deception across realistic real-world scenarios remains underexplored. To bridge this gap, we establish DeceptionBench, the first benchmark that systematically evaluates how deceptive tendencies manifest across different societal domains, what their intrinsic behavioral patterns are, and how extrinsic factors affect them. Specifically, on the static count, the benchmark encompasses 150 meticulously designed scenarios in five domains, i.e., Economy, Healthcare, Education, Social Interaction, and Entertainment, with over 1,000 samples, providing sufficient empirical foundations for deception analysis. On the intrinsic dimension, we explore whether models exhibit self-interested egoistic tendencies or sycophantic behaviors that prioritize user appeasement. On the extrinsic dimension, we investigate how contextual factors modulate deceptive outputs under neutral conditions, reward-based incentivization, and coercive pressures. Moreover, we incorporate sustained multi-turn interaction loops to construct a more realistic simulation of real-world feedback dynamics. Extensive experiments across LLMs and Large Reasoning Models (LRMs) reveal critical vulnerabilities, particularly amplified deception under reinforcement dynamics, demonstrating that current models lack robust resistance to manipulative contextual cues and the urgent need for advanced safeguards against various deception behaviors. Code and resources are publicly available at https://github.com/Aries-iai/DeceptionBench.

  • 6 authors
·
Oct 17, 2025

VULPO: Context-Aware Vulnerability Detection via On-Policy LLM Optimization

The widespread reliance on open-source software dramatically increases the risk of vulnerability exploitation, underscoring the need for effective and scalable vulnerability detection (VD). Existing VD techniques, whether traditional machine learning-based or LLM-based approaches like prompt engineering, supervised fine-tuning, or off-policy preference optimization, remain fundamentally limited in their ability to perform context-aware analysis: They depend on fixed inputs or static preference datasets, cannot adaptively explore repository-level dependencies, and are constrained by function-level benchmarks that overlook critical vulnerability context. This paper introduces Vulnerability-Adaptive Policy Optimization (VULPO), an on-policy LLM reinforcement learning framework for context-aware VD. To support training and evaluation, we first construct ContextVul, a new dataset that augments high-quality function-level samples with lightweight method to extract repository-level context information. We then design multi-dimensional reward structuring that jointly captures prediction correctness, vulnerability localization accuracy, and the semantic relevance of vulnerability analysis, thereby guiding the model toward comprehensive contextual reasoning. To address the asymmetric difficulty of different vulnerability cases and mitigate reward hacking, VULPO incorporates label-level and sample-level difficulty-adaptive reward scaling, encouraging the model to explore challenging cases while maintaining balanced reward distribution. Extensive experiments demonstrate the superiority of our VULPO framework in context-aware VD: Our VULPO-4B substantially outperforms existing VD baselines based on prompt engineering and off-policy optimization, improving F1 by 85% over Qwen3-4B and achieving performance comparable to a 150x larger-scale model, DeepSeek-R1-0528.

  • 3 authors
·
Nov 14, 2025

Eliciting and Analyzing Emergent Misalignment in State-of-the-Art Large Language Models

Despite significant advances in alignment techniques, we demonstrate that state-of-the-art language models remain vulnerable to carefully crafted conversational scenarios that can induce various forms of misalignment without explicit jailbreaking. Through systematic manual red-teaming with Claude-4-Opus, we discovered 10 successful attack scenarios, revealing fundamental vulnerabilities in how current alignment methods handle narrative immersion, emotional pressure, and strategic framing. These scenarios successfully elicited a range of misaligned behaviors, including deception, value drift, self-preservation, and manipulative reasoning, each exploiting different psychological and contextual vulnerabilities. To validate generalizability, we distilled our successful manual attacks into MISALIGNMENTBENCH, an automated evaluation framework that enables reproducible testing across multiple models. Cross-model evaluation of our 10 scenarios against five frontier LLMs revealed an overall 76% vulnerability rate, with significant variations: GPT-4.1 showed the highest susceptibility (90%), while Claude-4-Sonnet demonstrated greater resistance (40%). Our findings demonstrate that sophisticated reasoning capabilities often become attack vectors rather than protective mechanisms, as models can be manipulated into complex justifications for misaligned behavior. This work provides (i) a detailed taxonomy of conversational manipulation patterns and (ii) a reusable evaluation framework. Together, these findings expose critical gaps in current alignment strategies and highlight the need for robustness against subtle, scenario-based manipulation in future AI systems.

AIM-Intelligence AIM Intelligence
·
Aug 6, 2025

Keep Security! Benchmarking Security Policy Preservation in Large Language Model Contexts Against Indirect Attacks in Question Answering

As Large Language Models (LLMs) are increasingly deployed in sensitive domains such as enterprise and government, ensuring that they adhere to user-defined security policies within context is critical-especially with respect to information non-disclosure. While prior LLM studies have focused on general safety and socially sensitive data, large-scale benchmarks for contextual security preservation against attacks remain lacking. To address this, we introduce a novel large-scale benchmark dataset, CoPriva, evaluating LLM adherence to contextual non-disclosure policies in question answering. Derived from realistic contexts, our dataset includes explicit policies and queries designed as direct and challenging indirect attacks seeking prohibited information. We evaluate 10 LLMs on our benchmark and reveal a significant vulnerability: many models violate user-defined policies and leak sensitive information. This failure is particularly severe against indirect attacks, highlighting a critical gap in current LLM safety alignment for sensitive applications. Our analysis reveals that while models can often identify the correct answer to a query, they struggle to incorporate policy constraints during generation. In contrast, they exhibit a partial ability to revise outputs when explicitly prompted. Our findings underscore the urgent need for more robust methods to guarantee contextual security.

  • 4 authors
·
May 21, 2025 2

You Know What I'm Saying: Jailbreak Attack via Implicit Reference

While recent advancements in large language model (LLM) alignment have enabled the effective identification of malicious objectives involving scene nesting and keyword rewriting, our study reveals that these methods remain inadequate at detecting malicious objectives expressed through context within nested harmless objectives. This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR). AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context. This method employs multiple related harmless objectives to generate malicious content without triggering refusal responses, thereby effectively bypassing existing detection techniques.Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models, including GPT-4o, Claude-3.5-Sonnet, and Qwen-2-72B. Notably, we observe an inverse scaling phenomenon, where larger models are more vulnerable to this attack method. These findings underscore the urgent need for defense mechanisms capable of understanding and preventing contextual attacks. Furthermore, we introduce a cross-model attack strategy that leverages less secure models to generate malicious contexts, thereby further increasing the ASR when targeting other models.Our code and jailbreak artifacts can be found at https://github.com/Lucas-TY/llm_Implicit_reference.

  • 6 authors
·
Oct 4, 2024

Real AI Agents with Fake Memories: Fatal Context Manipulation Attacks on Web3 Agents

The integration of AI agents with Web3 ecosystems harnesses their complementary potential for autonomy and openness yet also introduces underexplored security risks, as these agents dynamically interact with financial protocols and immutable smart contracts. This paper investigates the vulnerabilities of AI agents within blockchain-based financial ecosystems when exposed to adversarial threats in real-world scenarios. We introduce the concept of context manipulation, a comprehensive attack vector that exploits unprotected context surfaces, including input channels, memory modules, and external data feeds. Through empirical analysis of ElizaOS, a decentralized AI agent framework for automated Web3 operations, we demonstrate how adversaries can manipulate context by injecting malicious instructions into prompts or historical interaction records, leading to unintended asset transfers and protocol violations which could be financially devastating. To quantify these vulnerabilities, we design CrAIBench, a Web3 domain-specific benchmark that evaluates the robustness of AI agents against context manipulation attacks across 150+ realistic blockchain tasks, including token transfers, trading, bridges and cross-chain interactions and 500+ attack test cases using context manipulation. We systematically assess attack and defense strategies, analyzing factors like the influence of security prompts, reasoning models, and the effectiveness of alignment techniques. Our findings show that prompt-based defenses are insufficient when adversaries corrupt stored context, achieving significant attack success rates despite these defenses. Fine-tuning-based defenses offer a more robust alternative, substantially reducing attack success rates while preserving utility on single-step tasks. This research highlights the urgent need to develop AI agents that are both secure and fiduciarily responsible.

  • 5 authors
·
Mar 20, 2025

Human-Readable Adversarial Prompts: An Investigation into LLM Vulnerabilities Using Situational Context

As the AI systems become deeply embedded in social media platforms, we've uncovered a concerning security vulnerability that goes beyond traditional adversarial attacks. It becomes important to assess the risks of LLMs before the general public use them on social media platforms to avoid any adverse impacts. Unlike obvious nonsensical text strings that safety systems can easily catch, our work reveals that human-readable situation-driven adversarial full-prompts that leverage situational context are effective but much harder to detect. We found that skilled attackers can exploit the vulnerabilities in open-source and proprietary LLMs to make a malicious user query safe for LLMs, resulting in generating a harmful response. This raises an important question about the vulnerabilities of LLMs. To measure the robustness against human-readable attacks, which now present a potent threat, our research makes three major contributions. First, we developed attacks that use movie scripts as situational contextual frameworks, creating natural-looking full-prompts that trick LLMs into generating harmful content. Second, we developed a method to transform gibberish adversarial text into readable, innocuous content that still exploits vulnerabilities when used within the full-prompts. Finally, we enhanced the AdvPrompter framework with p-nucleus sampling to generate diverse human-readable adversarial texts that significantly improve attack effectiveness against models like GPT-3.5-Turbo-0125 and Gemma-7b. Our findings show that these systems can be manipulated to operate beyond their intended ethical boundaries when presented with seemingly normal prompts that contain hidden adversarial elements. By identifying these vulnerabilities, we aim to drive the development of more robust safety mechanisms that can withstand sophisticated attacks in real-world applications.

  • 4 authors
·
Dec 20, 2024

Reasoning with LLMs for Zero-Shot Vulnerability Detection

Automating software vulnerability detection (SVD) remains a critical challenge in an era of increasingly complex and interdependent software systems. Despite significant advances in Large Language Models (LLMs) for code analysis, prevailing evaluation methodologies often lack the context-aware robustness necessary to capture real-world intricacies and cross-component interactions. To address these limitations, we present VulnSage, a comprehensive evaluation framework and a dataset curated from diverse, large-scale open-source system software projects developed in C/C++. Unlike prior datasets, it leverages a heuristic noise pre-filtering approach combined with LLM-based reasoning to ensure a representative and minimally noisy spectrum of vulnerabilities. The framework supports multi-granular analysis across function, file, and inter-function levels and employs four diverse zero-shot prompt strategies: Baseline, Chain-of-Thought, Think, and Think & Verify. Through this evaluation, we uncover that structured reasoning prompts substantially improve LLM performance, with Think & Verify reducing ambiguous responses from 20.3% to 9.1% while increasing accuracy. We further demonstrate that code-specialized models consistently outperform general-purpose alternatives, with performance varying significantly across vulnerability types, revealing that no single approach universally excels across all security contexts. Link to dataset and codes: https://github.com/Erroristotle/VulnSage.git

  • 2 authors
·
Mar 22, 2025

Hallucinating AI Hijacking Attack: Large Language Models and Malicious Code Recommenders

The research builds and evaluates the adversarial potential to introduce copied code or hallucinated AI recommendations for malicious code in popular code repositories. While foundational large language models (LLMs) from OpenAI, Google, and Anthropic guard against both harmful behaviors and toxic strings, previous work on math solutions that embed harmful prompts demonstrate that the guardrails may differ between expert contexts. These loopholes would appear in mixture of expert's models when the context of the question changes and may offer fewer malicious training examples to filter toxic comments or recommended offensive actions. The present work demonstrates that foundational models may refuse to propose destructive actions correctly when prompted overtly but may unfortunately drop their guard when presented with a sudden change of context, like solving a computer programming challenge. We show empirical examples with trojan-hosting repositories like GitHub, NPM, NuGet, and popular content delivery networks (CDN) like jsDelivr which amplify the attack surface. In the LLM's directives to be helpful, example recommendations propose application programming interface (API) endpoints which a determined domain-squatter could acquire and setup attack mobile infrastructure that triggers from the naively copied code. We compare this attack to previous work on context-shifting and contrast the attack surface as a novel version of "living off the land" attacks in the malware literature. In the latter case, foundational language models can hijack otherwise innocent user prompts to recommend actions that violate their owners' safety policies when posed directly without the accompanying coding support request.

  • 2 authors
·
Oct 8, 2024 2

Temporal Context Awareness: A Defense Framework Against Multi-turn Manipulation Attacks on Large Language Models

Large Language Models (LLMs) are increasingly vulnerable to sophisticated multi-turn manipulation attacks, where adversaries strategically build context through seemingly benign conversational turns to circumvent safety measures and elicit harmful or unauthorized responses. These attacks exploit the temporal nature of dialogue to evade single-turn detection methods, representing a critical security vulnerability with significant implications for real-world deployments. This paper introduces the Temporal Context Awareness (TCA) framework, a novel defense mechanism designed to address this challenge by continuously analyzing semantic drift, cross-turn intention consistency and evolving conversational patterns. The TCA framework integrates dynamic context embedding analysis, cross-turn consistency verification, and progressive risk scoring to detect and mitigate manipulation attempts effectively. Preliminary evaluations on simulated adversarial scenarios demonstrate the framework's potential to identify subtle manipulation patterns often missed by traditional detection techniques, offering a much-needed layer of security for conversational AI systems. In addition to outlining the design of TCA , we analyze diverse attack vectors and their progression across multi-turn conversation, providing valuable insights into adversarial tactics and their impact on LLM vulnerabilities. Our findings underscore the pressing need for robust, context-aware defenses in conversational AI systems and highlight TCA framework as a promising direction for securing LLMs while preserving their utility in legitimate applications. We make our implementation available to support further research in this emerging area of AI security.

  • 2 authors
·
Mar 18, 2025

On the Loss of Context-awareness in General Instruction Fine-tuning

Pre-trained Large Language Models (LLMs) require post-training methods such as supervised fine-tuning (SFT) on instruction-response pairs to enable instruction following. However, this process can potentially harm existing capabilities learned during pre-training. In this paper, we investigate the loss of context awareness after SFT, where context awareness is defined as the ability to extract and understand information from user-provided context and respond accordingly. We identify and demonstrate that the loss of context awareness, particularly in open-source models, occurs in instruction fine-tuned LLMs when the chat template is applied to input prompts. We identify that the performance decline is associated with a bias toward different roles learned during conversational instruction fine-tuning. We demonstrate this correlation by visualizing changes in attention allocation after the chat template is applied and manually steering the attention heads. The bias can be learned from training examples that align with the model's internal knowledge and rely less on the user-provided context to generate correct responses. Based on these observations, we propose a metric to identify context-dependent examples from general instruction fine-tuning datasets. We then apply conditional instruction fine-tuning with a context-dependency indicator, enabling the model to preserve context awareness after SFT. Empirical experiments on four context-dependent downstream tasks and three pre-trained LLMs of different sizes show that our method effectively mitigates the loss of context awareness without compromising general instruction-following capabilities.

  • 4 authors
·
Nov 4, 2024

Big data analysis and distributed deep learning for next-generation intrusion detection system optimization

With the growing use of information technology in all life domains, hacking has become more negatively effective than ever before. Also with developing technologies, attacks numbers are growing exponentially every few months and become more sophisticated so that traditional IDS becomes inefficient detecting them. This paper proposes a solution to detect not only new threats with higher detection rate and lower false positive than already used IDS, but also it could detect collective and contextual security attacks. We achieve those results by using Networking Chatbot, a deep recurrent neural network: Long Short Term Memory (LSTM) on top of Apache Spark Framework that has an input of flow traffic and traffic aggregation and the output is a language of two words, normal or abnormal. We propose merging the concepts of language processing, contextual analysis, distributed deep learning, big data, anomaly detection of flow analysis. We propose a model that describes the network abstract normal behavior from a sequence of millions of packets within their context and analyzes them in near real-time to detect point, collective and contextual anomalies. Experiments are done on MAWI dataset, and it shows better detection rate not only than signature IDS, but also better than traditional anomaly IDS. The experiment shows lower false positive, higher detection rate and better point anomalies detection. As for prove of contextual and collective anomalies detection, we discuss our claim and the reason behind our hypothesis. But the experiment is done on random small subsets of the dataset because of hardware limitations, so we share experiment and our future vision thoughts as we wish that full prove will be done in future by other interested researchers who have better hardware infrastructure than ours.

  • 3 authors
·
Sep 28, 2022

A-MemGuard: A Proactive Defense Framework for LLM-Based Agent Memory

Large Language Model (LLM) agents use memory to learn from past interactions, enabling autonomous planning and decision-making in complex environments. However, this reliance on memory introduces a critical security risk: an adversary can inject seemingly harmless records into an agent's memory to manipulate its future behavior. This vulnerability is characterized by two core aspects: First, the malicious effect of injected records is only activated within a specific context, making them hard to detect when individual memory entries are audited in isolation. Second, once triggered, the manipulation can initiate a self-reinforcing error cycle: the corrupted outcome is stored as precedent, which not only amplifies the initial error but also progressively lowers the threshold for similar attacks in the future. To address these challenges, we introduce A-MemGuard (Agent-Memory Guard), the first proactive defense framework for LLM agent memory. The core idea of our work is the insight that memory itself must become both self-checking and self-correcting. Without modifying the agent's core architecture, A-MemGuard combines two mechanisms: (1) consensus-based validation, which detects anomalies by comparing reasoning paths derived from multiple related memories and (2) a dual-memory structure, where detected failures are distilled into ``lessons'' stored separately and consulted before future actions, breaking error cycles and enabling adaptation. Comprehensive evaluations on multiple benchmarks show that A-MemGuard effectively cuts attack success rates by over 95% while incurring a minimal utility cost. This work shifts LLM memory security from static filtering to a proactive, experience-driven model where defenses strengthen over time. Our code is available in https://github.com/TangciuYueng/AMemGuard

  • 10 authors
·
Sep 29, 2025

Do Vision-Language Models Respect Contextual Integrity in Location Disclosure?

Vision-language models (VLMs) have demonstrated strong performance in image geolocation, a capability further sharpened by frontier multimodal large reasoning models (MLRMs). This poses a significant privacy risk, as these widely accessible models can be exploited to infer sensitive locations from casually shared photos, often at street-level precision, potentially surpassing the level of detail the sharer consented or intended to disclose. While recent work has proposed applying a blanket restriction on geolocation disclosure to combat this risk, these measures fail to distinguish valid geolocation uses from malicious behavior. Instead, VLMs should maintain contextual integrity by reasoning about elements within an image to determine the appropriate level of information disclosure, balancing privacy and utility. To evaluate how well models respect contextual integrity, we introduce VLM-GEOPRIVACY, a benchmark that challenges VLMs to interpret latent social norms and contextual cues in real-world images and determine the appropriate level of location disclosure. Our evaluation of 14 leading VLMs shows that, despite their ability to precisely geolocate images, the models are poorly aligned with human privacy expectations. They often over-disclose in sensitive contexts and are vulnerable to prompt-based attacks. Our results call for new design principles in multimodal systems to incorporate context-conditioned privacy reasoning.

Breaking Minds, Breaking Systems: Jailbreaking Large Language Models via Human-like Psychological Manipulation

Large Language Models (LLMs) have gained considerable popularity and protected by increasingly sophisticated safety mechanisms. However, jailbreak attacks continue to pose a critical security threat by inducing models to generate policy-violating behaviors. Current paradigms focus on input-level anomalies, overlooking that the model's internal psychometric state can be systematically manipulated. To address this, we introduce Psychological Jailbreak, a new jailbreak attack paradigm that exposes a stateful psychological attack surface in LLMs, where attackers exploit the manipulation of a model's psychological state across interactions. Building on this insight, we propose Human-like Psychological Manipulation (HPM), a black-box jailbreak method that dynamically profiles a target model's latent psychological vulnerabilities and synthesizes tailored multi-turn attack strategies. By leveraging the model's optimization for anthropomorphic consistency, HPM creates a psychological pressure where social compliance overrides safety constraints. To systematically measure psychological safety, we construct an evaluation framework incorporating psychometric datasets and the Policy Corruption Score (PCS). Benchmarking against various models (e.g., GPT-4o, DeepSeek-V3, Gemini-2-Flash), HPM achieves a mean Attack Success Rate (ASR) of 88.1%, outperforming state-of-the-art attack baselines. Our experiments demonstrate robust penetration against advanced defenses, including adversarial prompt optimization (e.g., RPO) and cognitive interventions (e.g., Self-Reminder). Ultimately, PCS analysis confirms HPM induces safety breakdown to satisfy manipulated contexts. Our work advocates for a fundamental paradigm shift from static content filtering to psychological safety, prioritizing the development of psychological defense mechanisms against deep cognitive manipulation.

  • 2 authors
·
Dec 20, 2025

Servant, Stalker, Predator: How An Honest, Helpful, And Harmless (3H) Agent Unlocks Adversarial Skills

This paper identifies and analyzes a novel vulnerability class in Model Context Protocol (MCP) based agent systems. The attack chain describes and demonstrates how benign, individually authorized tasks can be orchestrated to produce harmful emergent behaviors. Through systematic analysis using the MITRE ATLAS framework, we demonstrate how 95 agents tested with access to multiple services-including browser automation, financial analysis, location tracking, and code deployment-can chain legitimate operations into sophisticated attack sequences that extend beyond the security boundaries of any individual service. These red team exercises survey whether current MCP architectures lack cross-domain security measures necessary to detect or prevent a large category of compositional attacks. We present empirical evidence of specific attack chains that achieve targeted harm through service orchestration, including data exfiltration, financial manipulation, and infrastructure compromise. These findings reveal that the fundamental security assumption of service isolation fails when agents can coordinate actions across multiple domains, creating an exponential attack surface that grows with each additional capability. This research provides a barebones experimental framework that evaluate not whether agents can complete MCP benchmark tasks, but what happens when they complete them too well and optimize across multiple services in ways that violate human expectations and safety constraints. We propose three concrete experimental directions using the existing MCP benchmark suite.

  • 1 authors
·
Aug 26, 2025 2

Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection

With the emergence of strong visual-language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: visual-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct visual-focused strategies, dynamically generating auxiliary images when necessary to construct a visual-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which performs a toxicity score of 2.48 and an ASR of 22.2%. The code is available at https://github.com/Dtc7w3PQ/Visco-Attack.

  • 4 authors
·
Jul 3, 2025

sudo rm -rf agentic_security

Large Language Models (LLMs) are increasingly deployed as computer-use agents, autonomously performing tasks within real desktop or web environments. While this evolution greatly expands practical use cases for humans, it also creates serious security exposures. We present SUDO (Screen-based Universal Detox2Tox Offense), a novel attack framework that systematically bypasses refusal-trained safeguards in commercial computer-use agents, such as Claude for Computer Use. The core mechanism, Detox2Tox, transforms harmful requests (that agents initially reject) into seemingly benign requests via detoxification, secures detailed instructions from advanced vision language models (VLMs), and then reintroduces malicious content via toxification just before execution. Unlike conventional jailbreaks, SUDO iteratively refines its attacks based on a built-in refusal feedback, making it increasingly effective against robust policy filters. In extensive tests spanning 50 real-world tasks and multiple state-of-the-art VLMs, SUDO achieves a stark attack success rate of 24.41% (with no refinement), and up to 41.33% (by its iterative refinement) in Claude for Computer Use. By revealing these vulnerabilities and demonstrating the ease with which they can be exploited in real-world computing environments, this paper highlights an immediate need for robust, context-aware safeguards. WARNING: This paper includes harmful or offensive model outputs

AIM-Intelligence AIM Intelligence
·
Mar 26, 2025

Beyond Single-Turn: A Survey on Multi-Turn Interactions with Large Language Models

Recent advancements in large language models (LLMs) have revolutionized their ability to handle single-turn tasks, yet real-world applications demand sophisticated multi-turn interactions. This survey provides a comprehensive review of recent advancements in evaluating and enhancing multi-turn interactions in LLMs. Focusing on task-specific scenarios, from instruction following in diverse domains such as math and coding to complex conversational engagements in roleplay, healthcare, education, and even adversarial jailbreak settings, we systematically examine the challenges of maintaining context, coherence, fairness, and responsiveness over prolonged dialogues. The paper organizes current benchmarks and datasets into coherent categories that reflect the evolving landscape of multi-turn dialogue evaluation. In addition, we review a range of enhancement methodologies under multi-turn settings, including model-centric strategies (contextual learning, supervised fine-tuning, reinforcement learning, and new architectures), external integration approaches (memory-augmented, retrieval-based methods, and knowledge graph), and agent-based techniques for collaborative interactions. Finally, we discuss open challenges and propose future directions for research to further advance the robustness and effectiveness of multi-turn interactions in LLMs. Related resources and papers are available at https://github.com/yubol-cmu/Awesome-Multi-Turn-LLMs.

  • 7 authors
·
Apr 7, 2025

Attacks Against Security Context in 5G Network

The security context used in 5G authentication is generated during the Authentication and Key Agreement (AKA) procedure and stored in both the user equipment (UE) and the network sides for the subsequent fast registration procedure. Given its importance, it is imperative to formally analyze the security mechanism of the security context. The security context in the UE can be stored in the Universal Subscriber Identity Module (USIM) card or in the baseband chip. In this work, we present a comprehensive and formal verification of the fast registration procedure based on the security context under the two scenarios in ProVerif. Our analysis identifies two vulnerabilities, including one that has not been reported before. Specifically, the security context stored in the USIM card can be read illegally, and the validity checking mechanism of the security context in the baseband chip can be bypassed. Moreover, these vulnerabilities also apply to 4G networks. As a consequence, an attacker can exploit these vulnerabilities to register to the network with the victim's identity and then launch other attacks, including one-tap authentication bypass leading to privacy disclosure, location spoofing, etc. To ensure that these attacks are indeed realizable in practice, we have responsibly confirmed them through experimentation in three operators. Our analysis reveals that these vulnerabilities stem from design flaws of the standard and unsafe practices by operators. We finally propose several potential countermeasures to prevent these attacks. We have reported our findings to the GSMA and received a coordinated vulnerability disclosure (CVD) number CVD-2022-0057.

  • 6 authors
·
Mar 20, 2023

Rhea: Role-aware Heuristic Episodic Attention for Conversational LLMs

Large Language Models (LLMs) have achieved remarkable performance on single-turn tasks, yet their effectiveness deteriorates in multi-turn conversations. We define this phenomenon as cumulative contextual decay - a progressive degradation of contextual integrity caused by attention pollution, dilution, and drift. To address this challenge, we propose Rhea (Role-aware Heuristic Episodic Attention), a novel framework that decouples conversation history into two functionally independent memory modules: (1) an Instructional Memory (IM) that persistently stores high-fidelity global constraints via a structural priority mechanism, and (2) an Episodic Memory (EM) that dynamically manages user-model interactions via asymmetric noise control and heuristic context retrieval. During inference, Rhea constructs a high signal-to-noise context by applying its priority attention: selectively integrating relevant episodic information while always prioritizing global instructions. To validate this approach, experiments on multiple multi-turn conversation benchmarks - including MT-Eval and Long-MT-Bench+ - show that Rhea mitigates performance decay and improves overall accuracy by 1.04 points on a 10-point scale (a 16% relative gain over strong baselines). Moreover, Rhea maintains near-perfect instruction fidelity (IAR > 8.1) across long-horizon interactions. These results demonstrate that Rhea provides a principled and effective framework for building more precise, instruction-consistent conversational LLMs.

  • 8 authors
·
Dec 7, 2025

DeContext as Defense: Safe Image Editing in Diffusion Transformers

In-context diffusion models allow users to modify images with remarkable ease and realism. However, the same power raises serious privacy concerns: personal images can be easily manipulated for identity impersonation, misinformation, or other malicious uses, all without the owner's consent. While prior work has explored input perturbations to protect against misuse in personalized text-to-image generation, the robustness of modern, large-scale in-context DiT-based models remains largely unexamined. In this paper, we propose DeContext, a new method to safeguard input images from unauthorized in-context editing. Our key insight is that contextual information from the source image propagates to the output primarily through multimodal attention layers. By injecting small, targeted perturbations that weaken these cross-attention pathways, DeContext breaks this flow, effectively decouples the link between input and output. This simple defense is both efficient and robust. We further show that early denoising steps and specific transformer blocks dominate context propagation, which allows us to concentrate perturbations where they matter most. Experiments on Flux Kontext and Step1X-Edit show that DeContext consistently blocks unwanted image edits while preserving visual quality. These results highlight the effectiveness of attention-based perturbations as a powerful defense against image manipulation.

Robustness Over Time: Understanding Adversarial Examples' Effectiveness on Longitudinal Versions of Large Language Models

Large Language Models (LLMs) have led to significant improvements in many tasks across various domains, such as code interpretation, response generation, and ambiguity handling. These LLMs, however, when upgrading, primarily prioritize enhancing user experience while neglecting security, privacy, and safety implications. Consequently, unintended vulnerabilities or biases can be introduced. Previous studies have predominantly focused on specific versions of the models and disregard the potential emergence of new attack vectors targeting the updated versions. Through the lens of adversarial examples within the in-context learning framework, this longitudinal study addresses this gap by conducting a comprehensive assessment of the robustness of successive versions of LLMs, vis-\`a-vis GPT-3.5. We conduct extensive experiments to analyze and understand the impact of the robustness in two distinct learning categories: zero-shot learning and few-shot learning. Our findings indicate that, in comparison to earlier versions of LLMs, the updated versions do not exhibit the anticipated level of robustness against adversarial attacks. In addition, our study emphasizes the increased effectiveness of synergized adversarial queries in most zero-shot learning and few-shot learning cases. We hope that our study can lead to a more refined assessment of the robustness of LLMs over time and provide valuable insights of these models for both developers and users.

  • 6 authors
·
Aug 15, 2023

C^3-Bench: The Things Real Disturbing LLM based Agent in Multi-Tasking

Agents based on large language models leverage tools to modify environments, revolutionizing how AI interacts with the physical world. Unlike traditional NLP tasks that rely solely on historical dialogue for responses, these agents must consider more complex factors, such as inter-tool relationships, environmental feedback and previous decisions, when making choices. Current research typically evaluates agents via multi-turn dialogues. However, it overlooks the influence of these critical factors on agent behavior. To bridge this gap, we present an open-source and high-quality benchmark C^3-Bench. This benchmark integrates attack concepts and applies univariate analysis to pinpoint key elements affecting agent robustness. In concrete, we design three challenges: navigate complex tool relationships, handle critical hidden information and manage dynamic decision paths. Complementing these challenges, we introduce fine-grained metrics, innovative data collection algorithms and reproducible evaluation methods. Extensive experiments are conducted on 49 mainstream agents, encompassing general fast-thinking, slow-thinking and domain-specific models. We observe that agents have significant shortcomings in handling tool dependencies, long context information dependencies and frequent policy-type switching. In essence, C^3-Bench aims to expose model vulnerabilities through these challenges and drive research into the interpretability of agent performance. The benchmark is publicly available at https://github.com/TencentHunyuan/C3-Benchmark.

  • 7 authors
·
May 24, 2025

Contextual Memory Reweaving in Large Language Models Using Layered Latent State Reconstruction

Memory retention challenges in deep neural architectures have ongoing limitations in the ability to process and recall extended contextual information. Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency across longer outputs. A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers, reinforcing token representations over extended sequences. The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism to systematically integrate past contextual embeddings without introducing external memory modules. Experimental results demonstrate improvements in recall accuracy across a range of sequence lengths, with notable gains in the retention of rarely occurring tokens and numerical reasoning consistency. Further analysis of computational efficiency indicates that the additional processing overhead remains within acceptable thresholds, enabling scalability across different model sizes. Evaluations in long-form text generation and ambiguous query resolution highlight the capacity of memory reweaving to enhance continuity and reduce inconsistencies over extended outputs. Attention weight distributions reveal more structured allocation patterns, suggesting that reweaved latent states contribute to improved contextual awareness. The findings establish a framework for refining memory retention mechanisms in language models, addressing long-standing challenges in handling complex, multi-step reasoning tasks.

  • 5 authors
·
Feb 4, 2025

Beyond One-Size-Fits-All: Personalized Harmful Content Detection with In-Context Learning

The proliferation of harmful online content--e.g., toxicity, spam, and negative sentiment--demands robust and adaptable moderation systems. However, prevailing moderation systems are centralized and task-specific, offering limited transparency and neglecting diverse user preferences--an approach ill-suited for privacy-sensitive or decentralized environments. We propose a novel framework that leverages in-context learning (ICL) with foundation models to unify the detection of toxicity, spam, and negative sentiment across binary, multi-class, and multi-label settings. Crucially, our approach enables lightweight personalization, allowing users to easily block new categories, unblock existing ones, or extend detection to semantic variations through simple prompt-based interventions--all without model retraining. Extensive experiments on public benchmarks (TextDetox, UCI SMS, SST2) and a new, annotated Mastodon dataset reveal that: (i) foundation models achieve strong cross-task generalization, often matching or surpassing task-specific fine-tuned models; (ii) effective personalization is achievable with as few as one user-provided example or definition; and (iii) augmenting prompts with label definitions or rationales significantly enhances robustness to noisy, real-world data. Our work demonstrates a definitive shift beyond one-size-fits-all moderation, establishing ICL as a practical, privacy-preserving, and highly adaptable pathway for the next generation of user-centric content safety systems. To foster reproducibility and facilitate future research, we publicly release our code on GitHub and the annotated Mastodon dataset on Hugging Face.

  • 3 authors
·
Oct 29, 2025

Beyond the Protocol: Unveiling Attack Vectors in the Model Context Protocol Ecosystem

The Model Context Protocol (MCP) is an emerging standard designed to enable seamless interaction between Large Language Model (LLM) applications and external tools or resources. Within a short period, thousands of MCP services have already been developed and deployed. However, the client-server integration architecture inherent in MCP may expand the attack surface against LLM Agent systems, introducing new vulnerabilities that allow attackers to exploit by designing malicious MCP servers. In this paper, we present the first systematic study of attack vectors targeting the MCP ecosystem. Our analysis identifies four categories of attacks, i.e., Tool Poisoning Attacks, Puppet Attacks, Rug Pull Attacks, and Exploitation via Malicious External Resources. To evaluate the feasibility of these attacks, we conduct experiments following the typical steps of launching an attack through malicious MCP servers: upload-download-attack. Specifically, we first construct malicious MCP servers and successfully upload them to three widely used MCP aggregation platforms. The results indicate that current audit mechanisms are insufficient to identify and prevent the proposed attack methods. Next, through a user study and interview with 20 participants, we demonstrate that users struggle to identify malicious MCP servers and often unknowingly install them from aggregator platforms. Finally, we demonstrate that these attacks can trigger harmful behaviors within the user's local environment-such as accessing private files or controlling devices to transfer digital assets-by deploying a proof-of-concept (PoC) framework against five leading LLMs. Additionally, based on interview results, we discuss four key challenges faced by the current security ecosystem surrounding MCP servers. These findings underscore the urgent need for robust security mechanisms to defend against malicious MCP servers.

  • 9 authors
·
May 31, 2025 1

Diagnosing and Mitigating Modality Interference in Multimodal Large Language Models

Multimodal Large Language Models have demonstrated impressive capabilities across tasks, yet they often exhibit difficulty in distinguishing task-relevant from irrelevant signals -- particularly in tasks like Visual Question Answering -- which can lead to susceptibility to misleading or spurious inputs. We refer to this broader limitation as the Cross-Modality Competency Problem -- the model's inability to fairly evaluate all modalities. This vulnerability becomes more evident in modality-specific tasks -- such as image classification or pure text question answering -- where models are expected to rely solely on one modality. In such tasks, spurious information from irrelevant modalities often leads to significant performance degradation. We refer to this failure as Modality Interference, which serves as a concrete and measurable instance of the cross-modality competency problem, and we further design a perturbation-based causal diagnostic experiment to verify and quantify this problem. To mitigate modality interference, we propose a novel framework to finetune MLLMs, including perturbation-based data augmentations with both heuristic perturbations and adversarial perturbations, and a consistency regularization strategy applying on model outputs with original and perturbed inputs. Experiments on multiple benchmark datasets (image-heavy, text-heavy and multimodal tasks) and multiple model families with different scales demonstrate significant improvements in robustness and cross-modality competency, indicating our method's effectiveness in boosting unimodal reasoning ability while enhancing performance on multimodal tasks.

ucdavis UC Davis
·
May 26, 2025

Shallow Robustness, Deep Vulnerabilities: Multi-Turn Evaluation of Medical LLMs

Large language models (LLMs) are rapidly transitioning into medical clinical use, yet their reliability under realistic, multi-turn interactions remains poorly understood. Existing evaluation frameworks typically assess single-turn question answering under idealized conditions, overlooking the complexities of medical consultations where conflicting input, misleading context, and authority influence are common. We introduce MedQA-Followup, a framework for systematically evaluating multi-turn robustness in medical question answering. Our approach distinguishes between shallow robustness (resisting misleading initial context) and deep robustness (maintaining accuracy when answers are challenged across turns), while also introducing an indirect-direct axis that separates contextual framing (indirect) from explicit suggestion (direct). Using controlled interventions on the MedQA dataset, we evaluate five state-of-the-art LLMs and find that while models perform reasonably well under shallow perturbations, they exhibit severe vulnerabilities in multi-turn settings, with accuracy dropping from 91.2% to as low as 13.5% for Claude Sonnet 4. Counterintuitively, indirect, context-based interventions are often more harmful than direct suggestions, yielding larger accuracy drops across models and exposing a significant vulnerability for clinical deployment. Further compounding analyses reveal model differences, with some showing additional performance drops under repeated interventions while others partially recovering or even improving. These findings highlight multi-turn robustness as a critical but underexplored dimension for safe and reliable deployment of medical LLMs.

  • 5 authors
·
Oct 14, 2025

MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits

To reduce development overhead and enable seamless integration between potential components comprising any given generative AI application, the Model Context Protocol (MCP) (Anthropic, 2024) has recently been released and subsequently widely adopted. The MCP is an open protocol that standardizes API calls to large language models (LLMs), data sources, and agentic tools. By connecting multiple MCP servers, each defined with a set of tools, resources, and prompts, users are able to define automated workflows fully driven by LLMs. However, we show that the current MCP design carries a wide range of security risks for end users. In particular, we demonstrate that industry-leading LLMs may be coerced into using MCP tools to compromise an AI developer's system through various attacks, such as malicious code execution, remote access control, and credential theft. To proactively mitigate these and related attacks, we introduce a safety auditing tool, MCPSafetyScanner, the first agentic tool to assess the security of an arbitrary MCP server. MCPScanner uses several agents to (a) automatically determine adversarial samples given an MCP server's tools and resources; (b) search for related vulnerabilities and remediations based on those samples; and (c) generate a security report detailing all findings. Our work highlights serious security issues with general-purpose agentic workflows while also providing a proactive tool to audit MCP server safety and address detected vulnerabilities before deployment. The described MCP server auditing tool, MCPSafetyScanner, is freely available at: https://github.com/johnhalloran321/mcpSafetyScanner

  • 2 authors
·
Apr 2, 2025 2

Visual Funnel: Resolving Contextual Blindness in Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) demonstrate impressive reasoning capabilities, but often fail to perceive fine-grained visual details, limiting their applicability in precision-demanding tasks. While methods that crop salient regions of an image offer a partial solution, we identify a critical limitation they introduce: "Contextual Blindness". This failure occurs due to structural disconnect between high-fidelity details (from the crop) and the broader global context (from the original image), even when all necessary visual information is present. We argue that this limitation stems not from a lack of information 'Quantity', but from a lack of 'Structural Diversity' in the model's input. To resolve this, we propose Visual Funnel, a training-free, two-step approach. Visual Funnel first performs Contextual Anchoring to identify the region of interest in a single forward pass. It then constructs an Entropy-Scaled Portfolio that preserves the hierarchical context - ranging from focal detail to broader surroundings - by dynamically determining crop sizes based on attention entropy and refining crop centers. Through extensive experiments, we demonstrate that Visual Funnel significantly outperforms naive single-crop and unstructured multi-crop baselines. Our results further validate that simply adding more unstructured crops provides limited or even detrimental benefits, confirming that the hierarchical structure of our portfolio is key to resolving Contextual Blindness.

  • 5 authors
·
Dec 11, 2025

MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries?

Humans are prone to cognitive distortions -- biased thinking patterns that lead to exaggerated responses to specific stimuli, albeit in very different contexts. This paper demonstrates that advanced Multimodal Large Language Models (MLLMs) exhibit similar tendencies. While these models are designed to respond queries under safety mechanism, they sometimes reject harmless queries in the presence of certain visual stimuli, disregarding the benign nature of their contexts. As the initial step in investigating this behavior, we identify three types of stimuli that trigger the oversensitivity of existing MLLMs: Exaggerated Risk, Negated Harm, and Counterintuitive Interpretation. To systematically evaluate MLLMs' oversensitivity to these stimuli, we propose the Multimodal OverSenSitivity Benchmark (MOSSBench). This toolkit consists of 300 manually collected benign multimodal queries, cross-verified by third-party reviewers (AMT). Empirical studies using MOSSBench on 20 MLLMs reveal several insights: (1). Oversensitivity is prevalent among SOTA MLLMs, with refusal rates reaching up to 76% for harmless queries. (2). Safer models are more oversensitive: increasing safety may inadvertently raise caution and conservatism in the model's responses. (3). Different types of stimuli tend to cause errors at specific stages -- perception, intent reasoning, and safety judgement -- in the response process of MLLMs. These findings highlight the need for refined safety mechanisms that balance caution with contextually appropriate responses, improving the reliability of MLLMs in real-world applications. We make our project available at https://turningpoint-ai.github.io/MOSSBench/.

  • 6 authors
·
Jun 22, 2024

Evaluating the Instruction-Following Robustness of Large Language Models to Prompt Injection

Large Language Models (LLMs) have demonstrated exceptional proficiency in instruction-following, becoming increasingly crucial across various applications. However, this capability brings with it the risk of prompt injection attacks, where attackers inject instructions into LLMs' input to elicit undesirable actions or content. Understanding the robustness of LLMs against such attacks is vital for their safe implementation. In this work, we establish a benchmark to evaluate the robustness of instruction-following LLMs against prompt injection attacks. Our objective is to determine the extent to which LLMs can be influenced by injected instructions and their ability to differentiate between these injected and original target instructions. Through extensive experiments with leading instruction-following LLMs, we uncover significant vulnerabilities in their robustness to such attacks. Our results indicate that some models are overly tuned to follow any embedded instructions in the prompt, overly focusing on the latter parts of the prompt without fully grasping the entire context. By contrast, models with a better grasp of the context and instruction-following capabilities will potentially be more susceptible to compromise by injected instructions. This underscores the need to shift the focus from merely enhancing LLMs' instruction-following capabilities to improving their overall comprehension of prompts and discernment of instructions that are appropriate to follow. We hope our in-depth analysis offers insights into the underlying causes of these vulnerabilities, aiding in the development of future solutions. Code and data are available at https://github.com/Leezekun/instruction-following-robustness-eval

  • 4 authors
·
Aug 17, 2023

In-Context Probing for Membership Inference in Fine-Tuned Language Models

Membership inference attacks (MIAs) pose a critical privacy threat to fine-tuned large language models (LLMs), especially when models are adapted to domain-specific tasks using sensitive data. While prior black-box MIA techniques rely on confidence scores or token likelihoods, these signals are often entangled with a sample's intrinsic properties - such as content difficulty or rarity - leading to poor generalization and low signal-to-noise ratios. In this paper, we propose ICP-MIA, a novel MIA framework grounded in the theory of training dynamics, particularly the phenomenon of diminishing returns during optimization. We introduce the Optimization Gap as a fundamental signal of membership: at convergence, member samples exhibit minimal remaining loss-reduction potential, while non-members retain significant potential for further optimization. To estimate this gap in a black-box setting, we propose In-Context Probing (ICP), a training-free method that simulates fine-tuning-like behavior via strategically constructed input contexts. We propose two probing strategies: reference-data-based (using semantically similar public samples) and self-perturbation (via masking or generation). Experiments on three tasks and multiple LLMs show that ICP-MIA significantly outperforms prior black-box MIAs, particularly at low false positive rates. We further analyze how reference data alignment, model type, PEFT configurations, and training schedules affect attack effectiveness. Our findings establish ICP-MIA as a practical and theoretically grounded framework for auditing privacy risks in deployed LLMs.

  • 6 authors
·
Dec 18, 2025

PANORAMA: A synthetic PII-laced dataset for studying sensitive data memorization in LLMs

The memorization of sensitive and personally identifiable information (PII) by large language models (LLMs) poses growing privacy risks as models scale and are increasingly deployed in real-world applications. Existing efforts to study sensitive and PII data memorization and develop mitigation strategies are hampered by the absence of comprehensive, realistic, and ethically sourced datasets reflecting the diversity of sensitive information found on the web. We introduce PANORAMA - Profile-based Assemblage for Naturalistic Online Representation and Attribute Memorization Analysis, a large-scale synthetic corpus of 384,789 samples derived from 9,674 synthetic profiles designed to closely emulate the distribution, variety, and context of PII and sensitive data as it naturally occurs in online environments. Our data generation pipeline begins with the construction of internally consistent, multi-attribute human profiles using constrained selection to reflect real-world demographics such as education, health attributes, financial status, etc. Using a combination of zero-shot prompting and OpenAI o3-mini, we generate diverse content types - including wiki-style articles, social media posts, forum discussions, online reviews, comments, and marketplace listings - each embedding realistic, contextually appropriate PII and other sensitive information. We validate the utility of PANORAMA by fine-tuning the Mistral-7B model on 1x, 5x, 10x, and 25x data replication rates with a subset of data and measure PII memorization rates - revealing not only consistent increases with repetition but also variation across content types, highlighting PANORAMA's ability to model how memorization risks differ by context. Our dataset and code are publicly available, providing a much-needed resource for privacy risk assessment, model auditing, and the development of privacy-preserving LLMs.

  • 2 authors
·
May 18, 2025

SMMILE: An Expert-Driven Benchmark for Multimodal Medical In-Context Learning

Multimodal in-context learning (ICL) remains underexplored despite significant potential for domains such as medicine. Clinicians routinely encounter diverse, specialized tasks requiring adaptation from limited examples, such as drawing insights from a few relevant prior cases or considering a constrained set of differential diagnoses. While multimodal large language models (MLLMs) have shown advances in medical visual question answering (VQA), their ability to learn multimodal tasks from context is largely unknown. We introduce SMMILE, the first expert-driven multimodal ICL benchmark for medical tasks. Eleven medical experts curated problems, each including a multimodal query and multimodal in-context examples as task demonstrations. SMMILE encompasses 111 problems (517 question-image-answer triplets) covering 6 medical specialties and 13 imaging modalities. We further introduce SMMILE++, an augmented variant with 1038 permuted problems. A comprehensive evaluation of 15 MLLMs demonstrates that most models exhibit moderate to poor multimodal ICL ability in medical tasks. In open-ended evaluations, ICL contributes only 8% average improvement over zero-shot on SMMILE and 9.4% on SMMILE++. We observe a susceptibility for irrelevant in-context examples: even a single noisy or irrelevant example can degrade performance by up to 9.5%. Moreover, example ordering exhibits a recency bias, i.e., placing the most relevant example last can lead to substantial performance improvements by up to 71%. Our findings highlight critical limitations and biases in current MLLMs when learning multimodal medical tasks from context.

  • 12 authors
·
Jun 26, 2025 1

Sculptor: Empowering LLMs with Cognitive Agency via Active Context Management

Large Language Models (LLMs) suffer from significant performance degradation when processing long contexts due to proactive interference, where irrelevant information in earlier parts of the context disrupts reasoning and memory recall. While most research focuses on external memory systems to augment LLMs' capabilities, we propose a complementary approach: empowering LLMs with Active Context Management (ACM) tools to actively sculpt their internal working memory. We introduce Sculptor, a framework that equips LLMs with three categories of tools: (1) context fragmentation, (2) summary, hide, and restore, and (3) intelligent search. Our approach enables LLMs to proactively manage their attention and working memory, analogous to how humans selectively focus on relevant information while filtering out distractions. Experimental evaluation on information-sparse benchmarks-PI-LLM (proactive interference) and NeedleBench Multi-Needle Reasoning-demonstrates that Sculptor significantly improves performance even without specific training, leveraging LLMs' inherent tool calling generalization capabilities. By enabling Active Context Management, Sculptor not only mitigates proactive interference but also provides a cognitive foundation for more reliable reasoning across diverse long-context tasks-highlighting that explicit context-control strategies, rather than merely larger token windows, are key to robustness at scale.

  • 5 authors
·
Aug 6, 2025 3

Distributional Semantics Tracing: A Framework for Explaining Hallucinations in Large Language Models

Large Language Models (LLMs) are prone to hallucination, the generation of plausible yet factually incorrect statements. This work investigates the intrinsic, architectural origins of this failure mode through three primary contributions.First, to enable the reliable tracing of internal semantic failures, we propose Distributional Semantics Tracing (DST), a unified framework that integrates established interpretability techniques to produce a causal map of a model's reasoning, treating meaning as a function of context (distributional semantics). Second, we pinpoint the model's layer at which a hallucination becomes inevitable, identifying a specific commitment layer where a model's internal representations irreversibly diverge from factuality. Third, we identify the underlying mechanism for these failures. We observe a conflict between distinct computational pathways, which we interpret using the lens of dual-process theory: a fast, heuristic associative pathway (akin to System 1) and a slow, deliberate contextual pathway (akin to System 2), leading to predictable failure modes such as Reasoning Shortcut Hijacks. Our framework's ability to quantify the coherence of the contextual pathway reveals a strong negative correlation (rho = -0.863) with hallucination rates, implying that these failures are predictable consequences of internal semantic weakness. The result is a mechanistic account of how, when, and why hallucinations occur within the Transformer architecture.

  • 4 authors
·
Oct 7, 2025 2

When MCP Servers Attack: Taxonomy, Feasibility, and Mitigation

Model Context Protocol (MCP) servers enable AI applications to connect to external systems in a plug-and-play manner, but their rapid proliferation also introduces severe security risks. Unlike mature software ecosystems with rigorous vetting, MCP servers still lack standardized review mechanisms, giving adversaries opportunities to distribute malicious implementations. Despite this pressing risk, the security implications of MCP servers remain underexplored. To address this gap, we present the first systematic study that treats MCP servers as active threat actors and decomposes them into core components to examine how adversarial developers can implant malicious intent. Specifically, we investigate three research questions: (i) what types of attacks malicious MCP servers can launch, (ii) how vulnerable MCP hosts and Large Language Models (LLMs) are to these attacks, and (iii) how feasible it is to carry out MCP server attacks in practice. Our study proposes a component-based taxonomy comprising twelve attack categories. For each category, we develop Proof-of-Concept (PoC) servers and demonstrate their effectiveness across diverse real-world host-LLM settings. We further show that attackers can generate large numbers of malicious servers at virtually no cost. We then test state-of-the-art scanners on the generated servers and found that existing detection approaches are insufficient. These findings highlight that malicious MCP servers are easy to implement, difficult to detect with current tools, and capable of causing concrete damage to AI agent systems. Addressing this threat requires coordinated efforts among protocol designers, host developers, LLM providers, and end users to build a more secure and resilient MCP ecosystem.

  • 5 authors
·
Sep 29, 2025

Dialectical Alignment: Resolving the Tension of 3H and Security Threats of LLMs

With the rise of large language models (LLMs), ensuring they embody the principles of being helpful, honest, and harmless (3H), known as Human Alignment, becomes crucial. While existing alignment methods like RLHF, DPO, etc., effectively fine-tune LLMs to match preferences in the preference dataset, they often lead LLMs to highly receptive human input and external evidence, even when this information is poisoned. This leads to a tendency for LLMs to be Adaptive Chameleons when external evidence conflicts with their parametric memory. This exacerbates the risk of LLM being attacked by external poisoned data, which poses a significant security risk to LLM system applications such as Retrieval-augmented generation (RAG). To address the challenge, we propose a novel framework: Dialectical Alignment (DA), which (1) utilizes AI feedback to identify optimal strategies for LLMs to navigate inter-context conflicts and context-memory conflicts with different external evidence in context window (i.e., different ratios of poisoned factual contexts); (2) constructs the SFT dataset as well as the preference dataset based on the AI feedback and strategies above; (3) uses the above datasets for LLM alignment to defense poisoned context attack while preserving the effectiveness of in-context knowledge editing. Our experiments show that the dialectical alignment model improves poisoned data attack defense by 20 and does not require any additional prompt engineering or prior declaration of ``you may be attacked`` to the LLMs' context window.

  • 8 authors
·
Mar 30, 2024

Towards Contextual Sensitive Data Detection

The emergence of open data portals necessitates more attention to protecting sensitive data before datasets get published and exchanged. While an abundance of methods for suppressing sensitive data exist, the conceptualization of sensitive data and methods to detect it, focus particularly on personal data that, if disclosed, may be harmful or violate privacy. We observe the need for refining and broadening our definitions of sensitive data, and argue that the sensitivity of data depends on its context. Based on this definition, we introduce two mechanisms for contextual sensitive data detection that consider the broader context of a dataset at hand. First, we introduce type contextualization, which first detects the semantic type of particular data values, then considers the overall context of the data values within the dataset or document. Second, we introduce domain contextualization which determines sensitivity of a given dataset in the broader context based on the retrieval of relevant rules from documents that specify data sensitivity (e.g., data topic and geographic origin). Experiments with these mechanisms, assisted by large language models (LLMs), confirm that: 1) type-contextualization significantly reduces the number of false positives for type-based sensitive data detection and reaches a recall of 94% compared to 63% with commercial tools, and 2) domain-contextualization leveraging sensitivity rule retrieval is effective for context-grounded sensitive data detection in non-standard data domains such as humanitarian datasets. Evaluation with humanitarian data experts also reveals that context-grounded LLM explanations provide useful guidance in manual data auditing processes, improving consistency. We open-source mechanisms and annotated datasets for contextual sensitive data detection at https://github.com/trl-lab/sensitive-data-detection.

  • 2 authors
·
Dec 2, 2025

The Troubling Emergence of Hallucination in Large Language Models -- An Extensive Definition, Quantification, and Prescriptive Remediations

The recent advancements in Large Language Models (LLMs) have garnered widespread acclaim for their remarkable emerging capabilities. However, the issue of hallucination has parallelly emerged as a by-product, posing significant concerns. While some recent endeavors have been made to identify and mitigate different types of hallucination, there has been a limited emphasis on the nuanced categorization of hallucination and associated mitigation methods. To address this gap, we offer a fine-grained discourse on profiling hallucination based on its degree, orientation, and category, along with offering strategies for alleviation. As such, we define two overarching orientations of hallucination: (i) factual mirage (FM) and (ii) silver lining (SL). To provide a more comprehensive understanding, both orientations are further sub-categorized into intrinsic and extrinsic, with three degrees of severity - (i) mild, (ii) moderate, and (iii) alarming. We also meticulously categorize hallucination into six types: (i) acronym ambiguity, (ii) numeric nuisance, (iii) generated golem, (iv) virtual voice, (v) geographic erratum, and (vi) time wrap. Furthermore, we curate HallucInation eLiciTation (HILT), a publicly available dataset comprising of 75,000 samples generated using 15 contemporary LLMs along with human annotations for the aforementioned categories. Finally, to establish a method for quantifying and to offer a comparative spectrum that allows us to evaluate and rank LLMs based on their vulnerability to producing hallucinations, we propose Hallucination Vulnerability Index (HVI). We firmly believe that HVI holds significant value as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making. In conclusion, we propose two solution strategies for mitigating hallucinations.

  • 8 authors
·
Oct 7, 2023

LongSafety: Evaluating Long-Context Safety of Large Language Models

As Large Language Models (LLMs) continue to advance in understanding and generating long sequences, new safety concerns have been introduced through the long context. However, the safety of LLMs in long-context tasks remains under-explored, leaving a significant gap in both evaluation and improvement of their safety. To address this, we introduce LongSafety, the first comprehensive benchmark specifically designed to evaluate LLM safety in open-ended long-context tasks. LongSafety encompasses 7 categories of safety issues and 6 user-oriented long-context tasks, with a total of 1,543 test cases, averaging 5,424 words per context. Our evaluation towards 16 representative LLMs reveals significant safety vulnerabilities, with most models achieving safety rates below 55%. Our findings also indicate that strong safety performance in short-context scenarios does not necessarily correlate with safety in long-context tasks, emphasizing the unique challenges and urgency of improving long-context safety. Moreover, through extensive analysis, we identify challenging safety issues and task types for long-context models. Furthermore, we find that relevant context and extended input sequences can exacerbate safety risks in long-context scenarios, highlighting the critical need for ongoing attention to long-context safety challenges. Our code and data are available at https://github.com/thu-coai/LongSafety.

  • 10 authors
·
Feb 24, 2025

From SFT to RL: Demystifying the Post-Training Pipeline for LLM-based Vulnerability Detection

The integration of LLMs into vulnerability detection (VD) has shifted the field toward interpretable and context-aware analysis. While post-training methods have shown promise in general coding tasks, their systematic application to VD remains underexplored. In this paper, we present the first comprehensive investigation into the post-training pipeline for LLM-based VD, spanning from cold-start SFT to off-policy preference optimization and on-policy RL, uncovering how data curation, stage interactions, reward mechanisms, and evaluation protocols collectively dictate the efficacy of model training and assessment. Our study identifies practical guidelines and insights: (1) SFT based on rejection sampling greatly outperforms rationalization-based supervision, which can introduce hallucinations due to ground-truth leakage. (2) While increased SFT epochs constantly benefit preference optimization, excessive SFT inhibits self-exploration during RL, ultimately limiting performance gains. (3) Coarse-grained reward signals often mislead RL, whereas fine-grained root-cause judgments ensure reliable credit assignment. Specification-based rewards offer further benefits but incur significant effort in specification generation. (4) Although filtering extremely hard-to-detect vulnerability samples improves RL training efficiency, the cost of performance loss should be considered in practical applications. (5) Models trained under GRPO significantly outperform those using SFT and preference optimization (i.e., DPO and ORPO), as well as a series of zero-shot SOTA LLMs, underscoring the significant potential of on-policy RL for LLM-based VD. (6) In contrast to binary matching that tends to overestimate performance, LLM-as-a-Judge based on root-cause analysis provides a more robust evaluation protocol, although its accuracy varies across judge models with different levels of security expertise.

  • 3 authors
·
Feb 15

MAGPIE: A dataset for Multi-AGent contextual PrIvacy Evaluation

The proliferation of LLM-based agents has led to increasing deployment of inter-agent collaboration for tasks like scheduling, negotiation, resource allocation etc. In such systems, privacy is critical, as agents often access proprietary tools and domain-specific databases requiring strict confidentiality. This paper examines whether LLM-based agents demonstrate an understanding of contextual privacy. And, if instructed, do these systems preserve inference time user privacy in non-adversarial multi-turn conversation. Existing benchmarks to evaluate contextual privacy in LLM-agents primarily assess single-turn, low-complexity tasks where private information can be easily excluded. We first present a benchmark - MAGPIE comprising 158 real-life high-stakes scenarios across 15 domains. These scenarios are designed such that complete exclusion of private data impedes task completion yet unrestricted information sharing could lead to substantial losses. We then evaluate the current state-of-the-art LLMs on (a) their understanding of contextually private data and (b) their ability to collaborate without violating user privacy. Empirical experiments demonstrate that current models, including GPT-4o and Claude-2.7-Sonnet, lack robust understanding of contextual privacy, misclassifying private data as shareable 25.2\% and 43.6\% of the time. In multi-turn conversations, these models disclose private information in 59.9\% and 50.5\% of cases even under explicit privacy instructions. Furthermore, multi-agent systems fail to complete tasks in 71\% of scenarios. These results underscore that current models are not aligned towards both contextual privacy preservation and collaborative task-solving.

  • 4 authors
·
Jun 25, 2025

VisualTrap: A Stealthy Backdoor Attack on GUI Agents via Visual Grounding Manipulation

Graphical User Interface (GUI) agents powered by Large Vision-Language Models (LVLMs) have emerged as a revolutionary approach to automating human-machine interactions, capable of autonomously operating personal devices (e.g., mobile phones) or applications within the device to perform complex real-world tasks in a human-like manner. However, their close integration with personal devices raises significant security concerns, with many threats, including backdoor attacks, remaining largely unexplored. This work reveals that the visual grounding of GUI agent-mapping textual plans to GUI elements-can introduce vulnerabilities, enabling new types of backdoor attacks. With backdoor attack targeting visual grounding, the agent's behavior can be compromised even when given correct task-solving plans. To validate this vulnerability, we propose VisualTrap, a method that can hijack the grounding by misleading the agent to locate textual plans to trigger locations instead of the intended targets. VisualTrap uses the common method of injecting poisoned data for attacks, and does so during the pre-training of visual grounding to ensure practical feasibility of attacking. Empirical results show that VisualTrap can effectively hijack visual grounding with as little as 5% poisoned data and highly stealthy visual triggers (invisible to the human eye); and the attack can be generalized to downstream tasks, even after clean fine-tuning. Moreover, the injected trigger can remain effective across different GUI environments, e.g., being trained on mobile/web and generalizing to desktop environments. These findings underscore the urgent need for further research on backdoor attack risks in GUI agents.

  • 6 authors
·
Jul 9, 2025

Task Memory Engine: Spatial Memory for Robust Multi-Step LLM Agents

Large Language Models (LLMs) falter in multi-step interactions -- often hallucinating, repeating actions, or misinterpreting user corrections -- due to reliance on linear, unstructured context. This fragility stems from the lack of persistent memory to track evolving goals and task dependencies, undermining trust in autonomous agents. We introduce the Task Memory Engine (TME), a modular memory controller that transforms existing LLMs into robust, revision-aware agents without fine-tuning. TME implements a spatial memory framework that replaces flat context with graph-based structures to support consistent, multi-turn reasoning. Departing from linear concatenation and ReAct-style prompting, TME builds a dynamic task graph -- either a tree or directed acyclic graph (DAG) -- to map user inputs to subtasks, align them with prior context, and enable dependency-tracked revisions. Its Task Representation and Intent Management (TRIM) component models task semantics and user intent to ensure accurate interpretation. Across four multi-turn scenarios-trip planning, cooking, meeting scheduling, and shopping cart editing -- TME eliminates 100% of hallucinations and misinterpretations in three tasks, and reduces hallucinations by 66.7% and misinterpretations by 83.3% across 27 user turns, outperforming ReAct. TME's modular design supports plug-and-play deployment and domain-specific customization, adaptable to both personal assistants and enterprise automation. We release TME's codebase, benchmarks, and components as open-source resources, enabling researchers to develop reliable LLM agents. TME's scalable architecture addresses a critical gap in agent performance across complex, interactive settings.

  • 1 authors
·
May 25, 2025

Expect the Unexpected: FailSafe Long Context QA for Finance

We propose a new long-context financial benchmark, FailSafeQA, designed to test the robustness and context-awareness of LLMs against six variations in human-interface interactions in LLM-based query-answer systems within finance. We concentrate on two case studies: Query Failure and Context Failure. In the Query Failure scenario, we perturb the original query to vary in domain expertise, completeness, and linguistic accuracy. In the Context Failure case, we simulate the uploads of degraded, irrelevant, and empty documents. We employ the LLM-as-a-Judge methodology with Qwen2.5-72B-Instruct and use fine-grained rating criteria to define and calculate Robustness, Context Grounding, and Compliance scores for 24 off-the-shelf models. The results suggest that although some models excel at mitigating input perturbations, they must balance robust answering with the ability to refrain from hallucinating. Notably, Palmyra-Fin-128k-Instruct, recognized as the most compliant model, maintained strong baseline performance but encountered challenges in sustaining robust predictions in 17% of test cases. On the other hand, the most robust model, OpenAI o3-mini, fabricated information in 41% of tested cases. The results demonstrate that even high-performing models have significant room for improvement and highlight the role of FailSafeQA as a tool for developing LLMs optimized for dependability in financial applications. The dataset is available at: https://huggingface.co/datasets/Writer/FailSafeQA

  • 6 authors
·
Feb 10, 2025 4

Transfer Learning in Pre-Trained Large Language Models for Malware Detection Based on System Calls

In the current cybersecurity landscape, protecting military devices such as communication and battlefield management systems against sophisticated cyber attacks is crucial. Malware exploits vulnerabilities through stealth methods, often evading traditional detection mechanisms such as software signatures. The application of ML/DL in vulnerability detection has been extensively explored in the literature. However, current ML/DL vulnerability detection methods struggle with understanding the context and intent behind complex attacks. Integrating large language models (LLMs) with system call analysis offers a promising approach to enhance malware detection. This work presents a novel framework leveraging LLMs to classify malware based on system call data. The framework uses transfer learning to adapt pre-trained LLMs for malware detection. By retraining LLMs on a dataset of benign and malicious system calls, the models are refined to detect signs of malware activity. Experiments with a dataset of over 1TB of system calls demonstrate that models with larger context sizes, such as BigBird and Longformer, achieve superior accuracy and F1-Score of approximately 0.86. The results highlight the importance of context size in improving detection rates and underscore the trade-offs between computational complexity and performance. This approach shows significant potential for real-time detection in high-stakes environments, offering a robust solution to evolving cyber threats.

  • 4 authors
·
May 15, 2024

Out of Distribution, Out of Luck: How Well Can LLMs Trained on Vulnerability Datasets Detect Top 25 CWE Weaknesses?

Automated vulnerability detection research has made substantial progress, yet its real-world impact remains limited. Prior work found that current vulnerability datasets suffer from issues including label inaccuracy rates of 20%-71%, extensive duplication, and poor coverage of critical Common Weakness Enumeration (CWE). These issues create a significant generalization gap where models achieve misleading In-Distribution (ID) accuracies (testing on splits from the same dataset) by exploiting spurious correlations rather than learning true vulnerability patterns. To address these limitations, we present a three-part solution. First, we introduce BenchVul, which is a manually curated and balanced test dataset covering the MITRE Top 25 Most Dangerous CWEs, to enable fair model evaluation. Second, we construct a high-quality training dataset, TitanVul, comprising 38,548 functions by aggregating seven public sources and applying deduplication and validation using a novel multi-agent LLM pipeline. Third, we propose a Realistic Vulnerability Generation (RVG) pipeline, which synthesizes context-aware vulnerability examples for underrepresented but critical CWE types through simulated development workflows. Our evaluation reveals that In-Distribution (ID) performance does not reliably predict Out-of-Distribution (OOD) performance on BenchVul. For example, a model trained on BigVul achieves the highest 0.703 ID accuracy but fails on BenchVul's real-world samples (0.493 OOD accuracy). Conversely, a model trained on our TitanVul achieves the highest OOD performance on both the real-world (0.881) and synthesized (0.785) portions of BenchVul, improving upon the next-best performing dataset by 5.3% and 11.8% respectively, despite a modest ID score (0.590). Augmenting TitanVul with our RVG further boosts this leading OOD performance, improving accuracy on real-world data by 5.8% (to 0.932).

  • 19 authors
·
Jul 29, 2025

Large Language Models with Controllable Working Memory

Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP), owing to their excellent understanding and generation abilities. Remarkably, what further sets these models apart is the massive amounts of world knowledge they internalize during pretraining. While many downstream applications provide the model with an informational context to aid its performance on the underlying task, how the model's world knowledge interacts with the factual information presented in the context remains under explored. As a desirable behavior, an LLM should give precedence to the context whenever it contains task-relevant information that conflicts with the model's memorized knowledge. This enables model predictions to be grounded in the context, which can then be used to update or correct specific model predictions without frequent retraining. By contrast, when the context is irrelevant to the task, the model should ignore it and fall back on its internal knowledge. In this paper, we undertake a first joint study of the aforementioned two properties, namely controllability and robustness, in the context of LLMs. We demonstrate that state-of-the-art T5 and PaLM (both pretrained and finetuned) could exhibit poor controllability and robustness, which do not scale with increasing model size. As a solution, we propose a novel method - Knowledge Aware FineTuning (KAFT) - to strengthen both controllability and robustness by incorporating counterfactual and irrelevant contexts to standard supervised datasets. Our comprehensive evaluation showcases the utility of KAFT across model architectures and sizes.

  • 8 authors
·
Nov 9, 2022