new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 18

OmniInsert: Mask-Free Video Insertion of Any Reference via Diffusion Transformer Models

Recent advances in video insertion based on diffusion models are impressive. However, existing methods rely on complex control signals but struggle with subject consistency, limiting their practical applicability. In this paper, we focus on the task of Mask-free Video Insertion and aim to resolve three key challenges: data scarcity, subject-scene equilibrium, and insertion harmonization. To address the data scarcity, we propose a new data pipeline InsertPipe, constructing diverse cross-pair data automatically. Building upon our data pipeline, we develop OmniInsert, a novel unified framework for mask-free video insertion from both single and multiple subject references. Specifically, to maintain subject-scene equilibrium, we introduce a simple yet effective Condition-Specific Feature Injection mechanism to distinctly inject multi-source conditions and propose a novel Progressive Training strategy that enables the model to balance feature injection from subjects and source video. Meanwhile, we design the Subject-Focused Loss to improve the detailed appearance of the subjects. To further enhance insertion harmonization, we propose an Insertive Preference Optimization methodology to optimize the model by simulating human preferences, and incorporate a Context-Aware Rephraser module during reference to seamlessly integrate the subject into the original scenes. To address the lack of a benchmark for the field, we introduce InsertBench, a comprehensive benchmark comprising diverse scenes with meticulously selected subjects. Evaluation on InsertBench indicates OmniInsert outperforms state-of-the-art closed-source commercial solutions. The code will be released.

  • 11 authors
·
Sep 22, 2025 2

A Survey of Context Engineering for Large Language Models

The performance of Large Language Models (LLMs) is fundamentally determined by the contextual information provided during inference. This survey introduces Context Engineering, a formal discipline that transcends simple prompt design to encompass the systematic optimization of information payloads for LLMs. We present a comprehensive taxonomy decomposing Context Engineering into its foundational components and the sophisticated implementations that integrate them into intelligent systems. We first examine the foundational components: context retrieval and generation, context processing and context management. We then explore how these components are architecturally integrated to create sophisticated system implementations: retrieval-augmented generation (RAG), memory systems and tool-integrated reasoning, and multi-agent systems. Through this systematic analysis of over 1300 research papers, our survey not only establishes a technical roadmap for the field but also reveals a critical research gap: a fundamental asymmetry exists between model capabilities. While current models, augmented by advanced context engineering, demonstrate remarkable proficiency in understanding complex contexts, they exhibit pronounced limitations in generating equally sophisticated, long-form outputs. Addressing this gap is a defining priority for future research. Ultimately, this survey provides a unified framework for both researchers and engineers advancing context-aware AI.

  • 15 authors
·
Jul 17, 2025 14

Discourse-Aware Text Simplification: From Complex Sentences to Linked Propositions

Sentences that present a complex syntax act as a major stumbling block for downstream Natural Language Processing applications whose predictive quality deteriorates with sentence length and complexity. The task of Text Simplification (TS) may remedy this situation. It aims to modify sentences in order to make them easier to process, using a set of rewriting operations, such as reordering, deletion, or splitting. State-of-the-art syntactic TS approaches suffer from two major drawbacks: first, they follow a very conservative approach in that they tend to retain the input rather than transforming it, and second, they ignore the cohesive nature of texts, where context spread across clauses or sentences is needed to infer the true meaning of a statement. To address these problems, we present a discourse-aware TS approach that splits and rephrases complex English sentences within the semantic context in which they occur. Based on a linguistically grounded transformation stage that uses clausal and phrasal disembedding mechanisms, complex sentences are transformed into shorter utterances with a simple canonical structure that can be easily analyzed by downstream applications. With sentence splitting, we thus address a TS task that has hardly been explored so far. Moreover, we introduce the notion of minimality in this context, as we aim to decompose source sentences into a set of self-contained minimal semantic units. To avoid breaking down the input into a disjointed sequence of statements that is difficult to interpret because important contextual information is missing, we incorporate the semantic context between the split propositions in the form of hierarchical structures and semantic relationships. In that way, we generate a semantic hierarchy of minimal propositions that leads to a novel representation of complex assertions that puts a semantic layer on top of the simplified sentences.

  • 4 authors
·
Aug 1, 2023

ContextASR-Bench: A Massive Contextual Speech Recognition Benchmark

Automatic Speech Recognition (ASR) has been extensively investigated, yet prior evaluative efforts have largely been restricted to contextless paradigms. This constraint stems from the limited proficiency of conventional ASR models in context modeling and their deficiency in memory and reasoning based on world knowledge. Recent breakthroughs in the development of Large Language Models (LLMs) and corresponding Large Audio Language Models (LALMs) have markedly enhanced the visibility of general artificial intelligence capabilities. Consequently, there exists a compelling need for a benchmark that can evaluate both the generality and intelligence of ASR systems. To address this gap, we propose ContextASR-Bench: a comprehensive, large-scale benchmark designed to assess contextual speech recognition. This benchmark encompasses up to 40,000 data entries across over 10 domains, enabling a thorough evaluation of model performance in scenarios that omit or incorporate coarse-grained or fine-grained contextual information. Moreover, diverging from conventional ASR evaluations, our benchmark includes an analysis of model efficacy in recognizing named entities mentioned within the auditory input. Our extensive evaluation highlights that LALMs, with strong world knowledge and context learning capabilities, outperform conventional ASR models by a large margin. The dataset and evaluation code have been released at https://github.com/MrSupW/ContextASR-Bench.

  • 7 authors
·
Jul 8, 2025

Provence: efficient and robust context pruning for retrieval-augmented generation

Retrieval-augmented generation improves various aspects of large language models (LLMs) generation, but suffers from computational overhead caused by long contexts as well as the propagation of irrelevant retrieved information into generated responses. Context pruning deals with both aspects, by removing irrelevant parts of retrieved contexts before LLM generation. Existing context pruning approaches are however limited, and do not provide a universal model that would be both efficient and robust in a wide range of scenarios, e.g., when contexts contain a variable amount of relevant information or vary in length, or when evaluated on various domains. In this work, we close this gap and introduce Provence (Pruning and Reranking Of retrieVEd relevaNt ContExts), an efficient and robust context pruner for Question Answering, which dynamically detects the needed amount of pruning for a given context and can be used out-of-the-box for various domains. The three key ingredients of Provence are formulating the context pruning task as sequence labeling, unifying context pruning capabilities with context reranking, and training on diverse data. Our experimental results show that Provence enables context pruning with negligible to no drop in performance, in various domains and settings, at almost no cost in a standard RAG pipeline. We also conduct a deeper analysis alongside various ablations to provide insights into training context pruners for future work.

  • 4 authors
·
Jan 27, 2025

SFR-RAG: Towards Contextually Faithful LLMs

Retrieval Augmented Generation (RAG), a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance, has emerged as a pivotal area in generative AI. The LLMs used in RAG applications are required to faithfully and completely comprehend the provided context and users' questions, avoid hallucination, handle unanswerable, counterfactual or otherwise low-quality and irrelevant contexts, perform complex multi-hop reasoning and produce reliable citations. In this paper, we introduce SFR-RAG, a small LLM that is instruction-tuned with an emphasis on context-grounded generation and hallucination minimization. We also present ContextualBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks, such as HotpotQA and TriviaQA, with consistent RAG settings to ensure reproducibility and consistency in model assessments. Experimental results demonstrate that our SFR-RAG-9B model outperforms leading baselines such as Command-R+ (104B) and GPT-4o, achieving state-of-the-art results in 3 out of 7 benchmarks in ContextualBench with significantly fewer parameters. The model is also shown to be resilient to alteration in the contextual information and behave appropriately when relevant context is removed. Additionally, the SFR-RAG model maintains competitive performance in general instruction-following tasks and function-calling capabilities.

  • 10 authors
·
Sep 15, 2024

Does RAG Really Perform Bad For Long-Context Processing?

The efficient processing of long context poses a serious challenge for large language models (LLMs). Recently, retrieval-augmented generation (RAG) has emerged as a promising strategy for this problem, as it enables LLMs to make selective use of the long context for efficient computation. However, existing RAG approaches lag behind other long-context processing methods due to inherent limitations on inaccurate retrieval and fragmented contexts. To address these challenges, we introduce RetroLM, a novel RAG framework for long-context processing. Unlike traditional methods, RetroLM employs KV-level retrieval augmentation, where it partitions the LLM's KV cache into contiguous pages and retrieves the most crucial ones for efficient computation. This approach enhances robustness to retrieval inaccuracy, facilitates effective utilization of fragmented contexts, and saves the cost from repeated computation. Building on this framework, we further develop a specialized retriever for precise retrieval of critical pages and conduct unsupervised post-training to optimize the model's ability to leverage retrieved information. We conduct comprehensive evaluations with a variety of benchmarks, including LongBench, InfiniteBench, and RULER, where RetroLM significantly outperforms existing long-context LLMs and efficient long-context processing methods, particularly in tasks requiring intensive reasoning or extremely long-context comprehension.

  • 6 authors
·
Feb 17, 2025

Demonstrations Are All You Need: Advancing Offensive Content Paraphrasing using In-Context Learning

Paraphrasing of offensive content is a better alternative to content removal and helps improve civility in a communication environment. Supervised paraphrasers; however, rely heavily on large quantities of labelled data to help preserve meaning and intent. They also retain a large portion of the offensiveness of the original content, which raises questions on their overall usability. In this paper we aim to assist practitioners in developing usable paraphrasers by exploring In-Context Learning (ICL) with large language models (LLMs), i.e., using a limited number of input-label demonstration pairs to guide the model in generating desired outputs for specific queries. Our study focuses on key factors such as -- number and order of demonstrations, exclusion of prompt instruction, and reduction in measured toxicity. We perform principled evaluation on three datasets, including our proposed Context-Aware Polite Paraphrase dataset, comprising of dialogue-style rude utterances, polite paraphrases, and additional dialogue context. We evaluate our approach using two closed source and one open source LLM. Our results reveal that ICL is comparable to supervised methods in generation quality, while being qualitatively better by 25% on human evaluation and attaining lower toxicity by 76%. Also, ICL-based paraphrasers only show a slight reduction in performance even with just 10% training data.

  • 6 authors
·
Oct 16, 2023

Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?

As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.

  • 3 authors
·
Nov 7, 2024 3

Knowledge-Augmented Large Language Models for Personalized Contextual Query Suggestion

Large Language Models (LLMs) excel at tackling various natural language tasks. However, due to the significant costs involved in re-training or fine-tuning them, they remain largely static and difficult to personalize. Nevertheless, a variety of applications could benefit from generations that are tailored to users' preferences, goals, and knowledge. Among them is web search, where knowing what a user is trying to accomplish, what they care about, and what they know can lead to improved search experiences. In this work, we propose a novel and general approach that augments an LLM with relevant context from users' interaction histories with a search engine in order to personalize its outputs. Specifically, we construct an entity-centric knowledge store for each user based on their search and browsing activities on the web, which is then leveraged to provide contextually relevant LLM prompt augmentations. This knowledge store is light-weight, since it only produces user-specific aggregate projections of interests and knowledge onto public knowledge graphs, and leverages existing search log infrastructure, thereby mitigating the privacy, compliance, and scalability concerns associated with building deep user profiles for personalization. We then validate our approach on the task of contextual query suggestion, which requires understanding not only the user's current search context but also what they historically know and care about. Through a number of experiments based on human evaluation, we show that our approach is significantly better than several other LLM-powered baselines, generating query suggestions that are contextually more relevant, personalized, and useful.

  • 5 authors
·
Nov 9, 2023

RePro: Training Language Models to Faithfully Recycle the Web for Pretraining

High-quality pretraining data is the fossil fuel of large language models (LLMs), yet its reserves are running low for frontier models. In this paper, we introduce RePro, a novel web recycling method that trains a relatively small LM with reinforcement learning to generate effective and faithful rephrasings of pretraining data. Specifically, we design one quality reward and three faithfulness rewards, optimizing the LM rephraser to convert organic data into high-quality rephrasings while maintaining its core semantics and structure. In our experiment, we train a 4B rephraser to recycle 72B tokens sampled from DCLM-RefinedWeb. Pretraining results on 400M and 1.4B models demonstrate that RePro delivers 4.7%-14.0% relative accuracy gains over organic-only baseline on 22 downstream tasks. RePro also outperforms ReWire, the state-of-the-art web recycling method that prompts a 70B rephraser, as well as the organic baseline with a 4x larger data pool. Experiments with different amounts of recycled data highlight that RePro improves organic data efficiency by 2-3x. Individual and distributional analyses validate that RePro preserves more critical information and faithfully reflects the characteristics of organic data compared to prompting-based methods. Together, these results show that RePro provides an efficient and controllable path to effectively harness the fossil fuel of LLM pretraining. We open-source our code, rephraser, and recycled data at https://github.com/cxcscmu/RePro.

Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves

Misunderstandings arise not only in interpersonal communication but also between humans and Large Language Models (LLMs). Such discrepancies can make LLMs interpret seemingly unambiguous questions in unexpected ways, yielding incorrect responses. While it is widely acknowledged that the quality of a prompt, such as a question, significantly impacts the quality of the response provided by LLMs, a systematic method for crafting questions that LLMs can better comprehend is still underdeveloped. In this paper, we present a method named `Rephrase and Respond' (RaR), which allows LLMs to rephrase and expand questions posed by humans and provide responses in a single prompt. This approach serves as a simple yet effective prompting method for improving performance. We also introduce a two-step variant of RaR, where a rephrasing LLM first rephrases the question and then passes the original and rephrased questions together to a different responding LLM. This facilitates the effective utilization of rephrased questions generated by one LLM with another. Our experiments demonstrate that our methods significantly improve the performance of different models across a wide range to tasks. We further provide a comprehensive comparison between RaR and the popular Chain-of-Thought (CoT) methods, both theoretically and empirically. We show that RaR is complementary to CoT and can be combined with CoT to achieve even better performance. Our work not only contributes to enhancing LLM performance efficiently and effectively but also sheds light on a fair evaluation of LLM capabilities. Data and codes are available at https://github.com/uclaml/Rephrase-and-Respond.

  • 4 authors
·
Nov 7, 2023

Context-Picker: Dynamic context selection using multi-stage reinforcement learning

In long-context question answering (LCQA), determining the optimal amount of context for a given query is a significant challenge. Including too few passages may omit critical information, while including too many can introduce noise and reduce the quality of the answer. Traditional approaches, such as fixed Top-K retrieval and single-stage reranking, face the dilemma of selecting the right number of passages. This problem is particularly pronounced for factoid questions, which often require only a few specific pieces of evidence. To address this issue, we introduce Context-Picker, a reasoning-aware framework that shifts the paradigm from similarity-based ranking to minimal sufficient subset selection. Context-Picker treats context selection as a decision-making process optimized via a human-inspired, two-stage reinforcement learning schedule: a recall-oriented stage that prioritizes the coverage of reasoning chains, followed by a precision-oriented stage that aggressively prunes redundancy to distill a compact evidence set. To resolve reward sparsity, we propose an offline evidence distillation pipeline that mines "minimal sufficient sets" via a Leave-One-Out (LOO) procedure, providing dense, task-aligned supervision. Experiments on five long-context and multi-hop QA benchmarks demonstrate that Context-Picker significantly outperforms strong RAG baselines, achieving superior answer accuracy with comparable or reduced context lengths. Ablation studies indicate that the coarse-to-fine optimization schedule, the redundancy-aware reward shaping, and the rationale-guided format all contribute substantially to these gains.

  • 4 authors
·
Dec 16, 2025

Attention in Large Language Models Yields Efficient Zero-Shot Re-Rankers

Information retrieval (IR) systems have played a vital role in modern digital life and have cemented their continued usefulness in this new era of generative AI via retrieval-augmented generation. With strong language processing capabilities and remarkable versatility, large language models (LLMs) have become popular choices for zero-shot re-ranking in IR systems. So far, LLM-based re-ranking methods rely on strong generative capabilities, which restricts their use to either specialized or powerful proprietary models. Given these restrictions, we ask: is autoregressive generation necessary and optimal for LLMs to perform re-ranking? We hypothesize that there are abundant signals relevant to re-ranking within LLMs that might not be used to their full potential via generation. To more directly leverage such signals, we propose in-context re-ranking (ICR), a novel method that leverages the change in attention pattern caused by the search query for accurate and efficient re-ranking. To mitigate the intrinsic biases in LLMs, we propose a calibration method using a content-free query. Due to the absence of generation, ICR only requires two (O(1)) forward passes to re-rank N documents, making it substantially more efficient than generative re-ranking methods that require at least O(N) forward passes. Our novel design also enables ICR to be applied to any LLM without specialized training while guaranteeing a well-formed ranking. Extensive experiments with two popular open-weight LLMs on standard single-hop and multi-hop information retrieval benchmarks show that ICR outperforms RankGPT while cutting the latency by more than 60% in practice. Through detailed analyses, we show that ICR's performance is specially strong on tasks that require more complex re-ranking signals. Our findings call for further exploration on novel ways of utilizing open-weight LLMs beyond text generation.

  • 3 authors
·
Oct 3, 2024

Adapting LLMs for Efficient Context Processing through Soft Prompt Compression

The rapid advancement of Large Language Models (LLMs) has inaugurated a transformative epoch in natural language processing, fostering unprecedented proficiency in text generation, comprehension, and contextual scrutiny. Nevertheless, effectively handling extensive contexts, crucial for myriad applications, poses a formidable obstacle owing to the intrinsic constraints of the models' context window sizes and the computational burdens entailed by their operations. This investigation presents an innovative framework that strategically tailors LLMs for streamlined context processing by harnessing the synergies among natural language summarization, soft prompt compression, and augmented utility preservation mechanisms. Our methodology, dubbed SoftPromptComp, amalgamates natural language prompts extracted from summarization methodologies with dynamically generated soft prompts to forge a concise yet semantically robust depiction of protracted contexts. This depiction undergoes further refinement via a weighting mechanism optimizing information retention and utility for subsequent tasks. We substantiate that our framework markedly diminishes computational overhead and enhances LLMs' efficacy across various benchmarks, while upholding or even augmenting the caliber of the produced content. By amalgamating soft prompt compression with sophisticated summarization, SoftPromptComp confronts the dual challenges of managing lengthy contexts and ensuring model scalability. Our findings point towards a propitious trajectory for augmenting LLMs' applicability and efficiency, rendering them more versatile and pragmatic for real-world applications. This research enriches the ongoing discourse on optimizing language models, providing insights into the potency of soft prompts and summarization techniques as pivotal instruments for the forthcoming generation of NLP solutions.

  • 8 authors
·
Apr 7, 2024

CodeRAG-Bench: Can Retrieval Augment Code Generation?

While language models (LMs) have proven remarkably adept at generating code, many programs are challenging for LMs to generate using their parametric knowledge alone. Providing external contexts such as library documentation can facilitate generating accurate and functional code. Despite the success of retrieval-augmented generation (RAG) in various text-oriented tasks, its potential for improving code generation remains under-explored. In this work, we conduct a systematic, large-scale analysis by asking: in what scenarios can retrieval benefit code generation models? and what challenges remain? We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks, including basic programming, open-domain, and repository-level problems. We aggregate documents from five sources for models to retrieve contexts: competition solutions, online tutorials, library documentation, StackOverflow posts, and GitHub repositories. We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources. While notable gains are made in final code generation by retrieving high-quality contexts across various settings, our analysis reveals room for improvement -- current retrievers still struggle to fetch useful contexts especially with limited lexical overlap, and generators fail to improve with limited context lengths or abilities to integrate additional contexts. We hope CodeRAG-Bench serves as an effective testbed to encourage further development of advanced code-oriented RAG methods.

  • 7 authors
·
Jun 20, 2024

ARC-Encoder: learning compressed text representations for large language models

Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs x-times fewer continuous representations (typically x!in!{4,8}) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that work seamlessly with multiple LLMs. We release a training code at https://github.com/kyutai-labs/ARC-Encoder , fine-tuning dataset and pretrained models are available at https://huggingface.co/collections/kyutai/arc-encoders-68ee18787301407d60a57047 .

kyutai Kyutai
·
Oct 23, 2025 1

Enhancing Retrieval-Augmented Generation: A Study of Best Practices

Retrieval-Augmented Generation (RAG) systems have recently shown remarkable advancements by integrating retrieval mechanisms into language models, enhancing their ability to produce more accurate and contextually relevant responses. However, the influence of various components and configurations within RAG systems remains underexplored. A comprehensive understanding of these elements is essential for tailoring RAG systems to complex retrieval tasks and ensuring optimal performance across diverse applications. In this paper, we develop several advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG. Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, Contrastive In-Context Learning knowledge bases, multilingual knowledge bases, and Focus Mode retrieving relevant context at sentence-level. Through extensive experimentation, we provide a detailed analysis of how these factors influence response quality. Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency, thereby paving the way for more adaptable and high-performing RAG frameworks in diverse real-world scenarios. Our code and implementation details are publicly available.

  • 4 authors
·
Jan 13, 2025

MR.Rec: Synergizing Memory and Reasoning for Personalized Recommendation Assistant with LLMs

The application of Large Language Models (LLMs) in recommender systems faces key challenges in delivering deep personalization and intelligent reasoning, especially for interactive scenarios. Current methods are often constrained by limited context windows and single-turn reasoning, hindering their ability to capture dynamic user preferences and proactively reason over recommendation contexts. To address these limitations, we propose MR.Rec, a novel framework that synergizes memory and reasoning for LLM-based recommendations. To achieve personalization, we develop a comprehensive Retrieval-Augmented Generation (RAG) system that efficiently indexes and retrieves relevant external memory to enhance LLM personalization capabilities. Furthermore, to enable the synergy between memory and reasoning, our RAG system goes beyond conventional query-based retrieval by integrating reasoning enhanced memory retrieval. Finally, we design a reinforcement learning framework that trains the LLM to autonomously learn effective strategies for both memory utilization and reasoning refinement. By combining dynamic memory retrieval with adaptive reasoning, this approach ensures more accurate, context-aware, and highly personalized recommendations. Extensive experiments demonstrate that MR.Rec significantly outperforms state-of-the-art baselines across multiple metrics, validating its efficacy in delivering intelligent and personalized recommendations. We will release code and data upon paper notification.

  • 4 authors
·
Oct 16, 2025

Enhancing LLM Problem Solving with REAP: Reflection, Explicit Problem Deconstruction, and Advanced Prompting

Large Language Models (LLMs) have transformed natural language processing, yet improving their problem-solving capabilities, particularly for complex, reasoning-intensive tasks, remains a persistent challenge. This paper introduces the REAP (Reflection, Explicit Problem Deconstruction, and Advanced Prompting) method, an innovative approach within the dynamic context generation framework. REAP guides LLMs through reflection on the query, deconstructing it into manageable components, and generating relevant context to enhance the solution process. We evaluated REAP using a dataset designed to expose LLM limitations, comparing zero-shot prompting with REAP-enhanced prompts across six state-of-the-art models: OpenAI's o1-preview, o1-mini, GPT-4o, GPT-4o-mini, Google's Gemini 1.5 Pro, and Claude 3.5 Sonnet. The results demonstrate notable performance gains, with o1-mini improving by 40.97%, GPT-4o by 66.26%, and GPT-4o-mini by 112.93%. Despite the already strong baseline performance of OpenAI's o1-preview, modest gains were observed. Beyond performance improvements, REAP offers a cost-effective solution; for example, GPT-4o-mini, which is approximately 100 times cheaper than o1-preview, delivered competitive results. REAP also improves the clarity of model outputs, making it easier for humans to understand the reasoning behind the results and simplifying the process of identifying and addressing any issues. These findings demonstrate REAP's potential to greatly improve the capabilities of LLMs, providing both better performance and increased cost-efficiency across a wide range of applications.

  • 3 authors
·
Sep 14, 2024

Replace, Don't Expand: Mitigating Context Dilution in Multi-Hop RAG via Fixed-Budget Evidence Assembly

Retrieval-Augmented Generation (RAG) systems often fail on multi-hop queries when the initial retrieval misses a bridge fact. Prior corrective approaches, such as Self-RAG, CRAG, and Adaptive-k, typically address this by adding more context or pruning existing lists. However, simply expanding the context window often leads to context dilution, where distractors crowd out relevant information. We propose SEAL-RAG, a training-free controller that adopts a ``replace, don't expand'' strategy to fight context dilution under a fixed retrieval depth k. SEAL executes a (Search rightarrow Extract rightarrow Assess rightarrow Loop) cycle: it performs on-the-fly, entity-anchored extraction to build a live gap specification (missing entities/relations), triggers targeted micro-queries, and uses entity-first ranking to actively swap out distractors for gap-closing evidence. We evaluate SEAL-RAG against faithful re-implementations of Basic RAG, CRAG, Self-RAG, and Adaptive-k in a shared environment on HotpotQA and 2WikiMultiHopQA. On HotpotQA (k=3), SEAL improves answer correctness by +3--13 pp and evidence precision by +12--18 pp over Self-RAG. On 2WikiMultiHopQA (k=5), it outperforms Adaptive-k by +8.0 pp in accuracy and maintains 96\% evidence precision compared to 22\% for CRAG. These gains are statistically significant (p<0.001). By enforcing fixed-k replacement, SEAL yields a predictable cost profile while ensuring the top-k slots are optimized for precision rather than mere breadth. We release our code and data at https://github.com/mosherino/SEAL-RAG.

  • 2 authors
·
Dec 11, 2025 1

Does Context Matter? ContextualJudgeBench for Evaluating LLM-based Judges in Contextual Settings

The large language model (LLM)-as-judge paradigm has been used to meet the demand for a cheap, reliable, and fast evaluation of model outputs during AI system development and post-deployment monitoring. While judge models -- LLMs finetuned to specialize in assessing and critiquing model outputs -- have been touted as general purpose evaluators, they are typically evaluated only on non-contextual scenarios, such as instruction following. The omission of contextual settings -- those where external information is used as context to generate an output -- is surprising given the increasing prevalence of retrieval-augmented generation (RAG) and summarization use cases. Contextual assessment is uniquely challenging, as evaluation often depends on practitioner priorities, leading to conditional evaluation criteria (e.g., comparing responses based on factuality and then considering completeness if they are equally factual). To address the gap, we propose ContextualJudgeBench, a judge benchmark with 2,000 challenging response pairs across eight splits inspired by real-world contextual evaluation scenarios. We build our benchmark with a multi-pronged data construction pipeline that leverages both existing human annotations and model-based perturbations. Our comprehensive study across 11 judge models and 9 general purpose models, reveals that the contextual information and its assessment criteria present a significant challenge to even state-of-the-art models. For example, OpenAI's o1, the best-performing model, barely reaches 55% consistent accuracy.

  • 5 authors
·
Mar 19, 2025

PROFASR-BENCH: A Benchmark for Context-Conditioned ASR in High-Stakes Professional Speech

Automatic Speech Recognition (ASR) in professional settings faces challenges that existing benchmarks underplay: dense domain terminology, formal register variation, and near-zero tolerance for critical entity errors. We present ProfASR-Bench, a professional-talk evaluation suite for high-stakes applications across finance, medicine, legal, and technology. Each example pairs a natural-language prompt (domain cue and/or speaker profile) with an entity-rich target utterance, enabling controlled measurement of context-conditioned recognition. The corpus supports conventional ASR metrics alongside entity-aware scores and slice-wise reporting by accent and gender. Using representative families Whisper (encoder-decoder ASR) and Qwen-Omni (audio language models) under matched no-context, profile, domain+profile, oracle, and adversarial conditions, we find a consistent pattern: lightweight textual context produces little to no change in average word error rate (WER), even with oracle prompts, and adversarial prompts do not reliably degrade performance. We term this the context-utilization gap (CUG): current systems are nominally promptable yet underuse readily available side information. ProfASR-Bench provides a standardized context ladder, entity- and slice-aware reporting with confidence intervals, and a reproducible testbed for comparing fusion strategies across model families. Dataset: https://huggingface.co/datasets/prdeepakbabu/ProfASR-Bench Code: https://github.com/prdeepakbabu/ProfASR-Bench

  • 1 authors
·
Dec 29, 2025

Long-context Non-factoid Question Answering in Indic Languages

Question Answering (QA) tasks, which involve extracting answers from a given context, are relatively straightforward for modern Large Language Models (LLMs) when the context is short. However, long contexts pose challenges due to the quadratic complexity of the self-attention mechanism. This challenge is compounded in Indic languages, which are often low-resource. This study explores context-shortening techniques, including Open Information Extraction (OIE), coreference resolution, Answer Paragraph Selection (APS), and their combinations, to improve QA performance. Compared to the baseline of unshortened (long) contexts, our experiments on four Indic languages (Hindi, Tamil, Telugu, and Urdu) demonstrate that context-shortening techniques yield an average improvement of 4\% in semantic scores and 47\% in token-level scores when evaluated on three popular LLMs without fine-tuning. Furthermore, with fine-tuning, we achieve an average increase of 2\% in both semantic and token-level scores. Additionally, context-shortening reduces computational overhead. Explainability techniques like LIME and SHAP reveal that when the APS model confidently identifies the paragraph containing the answer, nearly all tokens within the selected text receive high relevance scores. However, the study also highlights the limitations of LLM-based QA systems in addressing non-factoid questions, particularly those requiring reasoning or debate. Moreover, verbalizing OIE-generated triples does not enhance system performance. These findings emphasize the potential of context-shortening techniques to improve the efficiency and effectiveness of LLM-based QA systems, especially for low-resource languages. The source code and resources are available at https://github.com/ritwikmishra/IndicGenQA.

  • 3 authors
·
Apr 18, 2025

Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models

Large Language Models (LLMs) possess impressive capabilities to generate meaningful code snippets given natural language intents in zero-shot, i.e., without the need for specific fine-tuning. In the perspective of unleashing their full potential, prior work has demonstrated the benefits of fine-tuning the models to task-specific data. However, fine-tuning process demands heavy computational costs and is intractable when resources are scarce, especially for models with billions of parameters. In light of these challenges, previous studies explored In-Context Learning (ICL) as an effective strategy to generate contextually appropriate code without fine-tuning. However, it operates at inference time and does not involve learning task-specific parameters, potentially limiting the model's performance on downstream tasks. In this context, we foresee that Parameter-Efficient Fine-Tuning (PEFT) techniques carry a high potential for efficiently specializing LLMs to task-specific data. In this paper, we deliver a comprehensive study of LLMs with the impact of PEFT techniques under the automated code generation scenario. Our experimental results reveal the superiority and potential of such techniques over ICL on a wide range of LLMs in reducing the computational burden and improving performance. Therefore, the study opens opportunities for broader applications of PEFT in software engineering scenarios.

  • 5 authors
·
Aug 21, 2023

Relevance Isn't All You Need: Scaling RAG Systems With Inference-Time Compute Via Multi-Criteria Reranking

Modern Large Language Model (LLM) systems typically rely on Retrieval Augmented Generation (RAG) which aims to gather context that is useful for response generation. These RAG systems typically optimize strictly towards retrieving context that is maximally relevant to the query. However, conventional theory suggests that retrieval systems which seek to maximize context relevance without any additional explicit criteria can create information bottlenecks. We reaffirm this finding in the modern age of LLM's by showing that in standard RAG pipelines, maximizing for context relevance alone can degrade downstream response quality. In response, we show evaluations of existing RAG methods which account for both context relevance and answer quality. These evaluations introduce a novel finding that existing RAG systems scale poorly with inference time compute usage when considering our combined metric. We introduce "RErank BEyond reLevance (REBEL)", which enables RAG systems to scale with inference-time compute via injection of multi-criteria optimization using Chain-of-Thought prompting (and optionally Multi-Turn dialogue). Ultimately, this enables a new performance/speed tradeoff curve, where RAG systems are able to achieve both higher relevance of retrieved contexts and superior answer quality as inference time increases. Code for the implementation of our method in llama-index can be found at the following PR: https://github.com/run-llama/llama_index/pull/17590. Code for running experiments using this llama-index implementation can be found at https://github.com/microsoft/REBEL.

  • 2 authors
·
Mar 13, 2025

Grounding Language Model with Chunking-Free In-Context Retrieval

This paper presents a novel Chunking-Free In-Context (CFIC) retrieval approach, specifically tailored for Retrieval-Augmented Generation (RAG) systems. Traditional RAG systems often struggle with grounding responses using precise evidence text due to the challenges of processing lengthy documents and filtering out irrelevant content. Commonly employed solutions, such as document chunking and adapting language models to handle longer contexts, have their limitations. These methods either disrupt the semantic coherence of the text or fail to effectively address the issues of noise and inaccuracy in evidence retrieval. CFIC addresses these challenges by circumventing the conventional chunking process. It utilizes the encoded hidden states of documents for in-context retrieval, employing auto-aggressive decoding to accurately identify the specific evidence text required for user queries, eliminating the need for chunking. CFIC is further enhanced by incorporating two decoding strategies, namely Constrained Sentence Prefix Decoding and Skip Decoding. These strategies not only improve the efficiency of the retrieval process but also ensure that the fidelity of the generated grounding text evidence is maintained. Our evaluations of CFIC on a range of open QA datasets demonstrate its superiority in retrieving relevant and accurate evidence, offering a significant improvement over traditional methods. By doing away with the need for document chunking, CFIC presents a more streamlined, effective, and efficient retrieval solution, making it a valuable advancement in the field of RAG systems.

  • 5 authors
·
Feb 15, 2024

On the Loss of Context-awareness in General Instruction Fine-tuning

Pre-trained Large Language Models (LLMs) require post-training methods such as supervised fine-tuning (SFT) on instruction-response pairs to enable instruction following. However, this process can potentially harm existing capabilities learned during pre-training. In this paper, we investigate the loss of context awareness after SFT, where context awareness is defined as the ability to extract and understand information from user-provided context and respond accordingly. We identify and demonstrate that the loss of context awareness, particularly in open-source models, occurs in instruction fine-tuned LLMs when the chat template is applied to input prompts. We identify that the performance decline is associated with a bias toward different roles learned during conversational instruction fine-tuning. We demonstrate this correlation by visualizing changes in attention allocation after the chat template is applied and manually steering the attention heads. The bias can be learned from training examples that align with the model's internal knowledge and rely less on the user-provided context to generate correct responses. Based on these observations, we propose a metric to identify context-dependent examples from general instruction fine-tuning datasets. We then apply conditional instruction fine-tuning with a context-dependency indicator, enabling the model to preserve context awareness after SFT. Empirical experiments on four context-dependent downstream tasks and three pre-trained LLMs of different sizes show that our method effectively mitigates the loss of context awareness without compromising general instruction-following capabilities.

  • 4 authors
·
Nov 4, 2024

Scaling LLM Multi-turn RL with End-to-end Summarization-based Context Management

We study reinforcement learning (RL) fine-tuning of large language model (LLM) agents for long-horizon multi-turn tool use, where context length quickly becomes a fundamental bottleneck. Existing RL pipelines can suffer from degraded instruction following, excessive rollout costs, and most importantly, strict context limits. To address these challenges, we introduce summarization-based context management to training. In specific, it periodically compresses the tool using history by LLM-generated summaries that retain task-relevant information to keep a compact context while enabling the agent to scale beyond the fixed context window. Building on this formulation, we derive a policy gradient representation that seamlessly enables standard LLM RL infrastructures to optimize both tool-use behaviors as well as summarization strategies in an end-to-end fashion. We instantiate this framework with SUmmarization augmented Policy Optimization (SUPO), an LLM RL algorithm that enables long-horizon training beyond a fixed context limit. Experiments on interactive function calling and searching tasks demonstrate that SUPO significantly improves the success rate while maintaining the same or even lower working context length compared to baselines. We also demonstrate that for complex searching tasks, SUPO can further improve the evaluation performance when scaling test-time maximum round of summarization beyond that of training time. Our results establish summarization-based context management as a principled and scalable approach for training RL agents beyond a fixed context length limit.

  • 7 authors
·
Oct 8, 2025 2

Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation

Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license.

  • 5 authors
·
Jun 24, 2024 3

L-Eval: Instituting Standardized Evaluation for Long Context Language Models

Recently, there has been growing interest in extending the context length of instruction-following models in order to effectively process single-turn long input (e.g. summarizing a paper) and conversations with more extensive histories. While proprietary models such as GPT-4 and Claude have demonstrated considerable advancements in handling tens of thousands of tokens of context, open-sourced models are still in the early stages of experimentation. It also remains unclear whether developing these long context models can offer substantial gains on practical downstream tasks over retrieval-based methods or models simply trained on chunked contexts. To address this challenge, we propose to institute standardized evaluation for long context language models. Concretely, we develop L-Eval which contains 411 long documents and over 2,000 query-response pairs manually annotated and checked by the authors encompassing areas such as law, finance, school lectures, lengthy conversations, news, long-form novels, and meetings. L-Eval also adopts diverse evaluation methods and instruction styles, enabling a more reliable assessment of Long Context Language Models (LCLMs). Our findings indicate that while open-source models typically lag behind their commercial counterparts, they still exhibit impressive performance. LLaMA2 achieves the best results (win 45\% vs turbo-16k) on open-ended tasks with only 4k context length and ChatGLM2 achieves the best results on closed-ended tasks with 8k input tokens. We release our new evaluation suite, code, and all generation results including predictions from all open-sourced LCLMs, GPT4-32k, Cluade-100k at {https://github.com/OpenLMLab/LEval}.

  • 7 authors
·
Jul 20, 2023

Guiding Language Models of Code with Global Context using Monitors

Language models of code (LMs) work well when the surrounding code in the vicinity of generation provides sufficient context. This is not true when it becomes necessary to use types or functionality defined in another module or library, especially those not seen during training. LMs suffer from limited awareness of such global context and end up hallucinating, e.g., using types defined in other files incorrectly. Recent work tries to overcome this issue by retrieving global information to augment the local context. However, this bloats the prompt or requires architecture modifications and additional training. Integrated development environments (IDEs) assist developers by bringing the global context at their fingertips using static analysis. We extend this assistance, enjoyed by developers, to the LMs. We propose a notion of monitors that use static analysis in the background to guide the decoding. Unlike a priori retrieval, static analysis is invoked iteratively during the entire decoding process, providing the most relevant suggestions on demand. We demonstrate the usefulness of our proposal by monitoring for type-consistent use of identifiers whenever an LM generates code for object dereference. To evaluate our approach, we curate PragmaticCode, a dataset of open-source projects with their development environments. On models of varying parameter scale, we show that monitor-guided decoding consistently improves the ability of an LM to not only generate identifiers that match the ground truth but also improves compilation rates and agreement with ground truth. We find that LMs with fewer parameters, when guided with our monitor, can outperform larger LMs. With monitor-guided decoding, SantaCoder-1.1B achieves better compilation rate and next-identifier match than the much larger text-davinci-003 model. The datasets and code will be released at https://aka.ms/monitors4codegen .

  • 5 authors
·
Jun 19, 2023 3

A Context-Driven Training-Free Network for Lightweight Scene Text Segmentation and Recognition

Modern scene text recognition systems often depend on large end-to-end architectures that require extensive training and are prohibitively expensive for real-time scenarios. In such cases, the deployment of heavy models becomes impractical due to constraints on memory, computational resources, and latency. To address these challenges, we propose a novel, training-free plug-and-play framework that leverages the strengths of pre-trained text recognizers while minimizing redundant computations. Our approach uses context-based understanding and introduces an attention-based segmentation stage, which refines candidate text regions at the pixel level, improving downstream recognition. Instead of performing traditional text detection that follows a block-level comparison between feature map and source image and harnesses contextual information using pretrained captioners, allowing the framework to generate word predictions directly from scene context.Candidate texts are semantically and lexically evaluated to get a final score. Predictions that meet or exceed a pre-defined confidence threshold bypass the heavier process of end-to-end text STR profiling, ensuring faster inference and cutting down on unnecessary computations. Experiments on public benchmarks demonstrate that our paradigm achieves performance on par with state-of-the-art systems, yet requires substantially fewer resources.

  • 4 authors
·
Mar 19, 2025

Just read twice: closing the recall gap for recurrent language models

Recurrent large language models that compete with Transformers in language modeling perplexity are emerging at a rapid rate (e.g., Mamba, RWKV). Excitingly, these architectures use a constant amount of memory during inference. However, due to the limited memory, recurrent LMs cannot recall and use all the information in long contexts leading to brittle in-context learning (ICL) quality. A key challenge for efficient LMs is selecting what information to store versus discard. In this work, we observe the order in which information is shown to the LM impacts the selection difficulty. To formalize this, we show that the hardness of information recall reduces to the hardness of a problem called set disjointness (SD), a quintessential problem in communication complexity that requires a streaming algorithm (e.g., recurrent model) to decide whether inputted sets are disjoint. We empirically and theoretically show that the recurrent memory required to solve SD changes with set order, i.e., whether the smaller set appears first in-context. Our analysis suggests, to mitigate the reliance on data order, we can put information in the right order in-context or process prompts non-causally. Towards that end, we propose: (1) JRT-Prompt, where context gets repeated multiple times in the prompt, effectively showing the model all data orders. This gives 11.0 pm 1.3 points of improvement, averaged across 16 recurrent LMs and the 6 ICL tasks, with 11.9times higher throughput than FlashAttention-2 for generation prefill (length 32k, batch size 16, NVidia H100). We then propose (2) JRT-RNN, which uses non-causal prefix-linear-attention to process prompts and provides 99% of Transformer quality at 360M params., 30B tokens and 96% at 1.3B params., 50B tokens on average across the tasks, with 19.2times higher throughput for prefill than FA2.

  • 9 authors
·
Jul 7, 2024

EXIT: Context-Aware Extractive Compression for Enhancing Retrieval-Augmented Generation

We introduce EXIT, an extractive context compression framework that enhances both the effectiveness and efficiency of retrieval-augmented generation (RAG) in question answering (QA). Current RAG systems often struggle when retrieval models fail to rank the most relevant documents, leading to the inclusion of more context at the expense of latency and accuracy. While abstractive compression methods can drastically reduce token counts, their token-by-token generation process significantly increases end-to-end latency. Conversely, existing extractive methods reduce latency but rely on independent, non-adaptive sentence selection, failing to fully utilize contextual information. EXIT addresses these limitations by classifying sentences from retrieved documents - while preserving their contextual dependencies - enabling parallelizable, context-aware extraction that adapts to query complexity and retrieval quality. Our evaluations on both single-hop and multi-hop QA tasks show that EXIT consistently surpasses existing compression methods and even uncompressed baselines in QA accuracy, while also delivering substantial reductions in inference time and token count. By improving both effectiveness and efficiency, EXIT provides a promising direction for developing scalable, high-quality QA solutions in RAG pipelines. Our code is available at https://github.com/ThisIsHwang/EXIT

  • 6 authors
·
Dec 17, 2024