new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 15

Evaluating LLMs on Sequential API Call Through Automated Test Generation

By integrating tools from external APIs, Large Language Models (LLMs) have expanded their promising capabilities in a diverse spectrum of complex real-world tasks. However, testing, evaluation, and analysis of LLM tool use remain in their early stages. Most existing benchmarks rely on manually collected test cases, many of which cannot be automatically checked for semantic correctness and instead depend on static methods such as string matching. Additionally, these benchmarks often overlook the complex interactions that occur between sequential API calls, which are common in real-world applications. To fill the gap, in this paper, we introduce StateGen, an automated framework designed to generate diverse coding tasks involving sequential API interactions. StateGen combines state-machine-based API constraint solving and validation, energy-based sampling, and control-flow injection to generate executable programs. These programs are then translated into human-like natural language task descriptions through a collaboration of two LLM agents. Utilizing StateGen, we construct StateEval, a benchmark encompassing 120 verified test cases spanning across three representative scenarios: Session Service, Tensor Operation, and ElevenLabs MCP. Experimental results confirm that StateGen can effectively generate challenging and realistic API-oriented tasks, highlighting areas for improvement in current LLMs incorporating APIs.We make our framework and benchmark publicly available to support future research.

  • 7 authors
·
Jul 12, 2025 1

GOAT: A Training Framework for Goal-Oriented Agent with Tools

Large language models (LLMs) have recently been extended beyond traditional text generation to serve as interactive agents capable of using external tools based on user intent. However, current LLM agents still show limited ability to handle goal-oriented queries, which require decomposing a high-level objective into multiple interdependent API calls with correct planning and execution. Current approaches mainly rely on zero-shot evaluation due to the absence of training data. While proprietary closed-source models such as GPT-4 demonstrate strong reasoning abilities, smaller open-source models struggle to perform complex tool use effectively. Thus, we propose a novel training framework GOAT, which enables fine-tuning of LLM agents in a human annotation-free setting. GOAT automatically constructs synthetic datasets of goal-oriented API execution tasks directly from given API documents, equipping models with the ability to reason over interdependent calls and generate coherent responses. Through extensive experiments, we show that GOAT-trained agents achieve state-of-the-art performance across multiple existing goal-oriented benchmarks. In addition, we introduce GOATBench, a new goal-oriented API execution benchmark, and demonstrate that agents trained with GOAT also excel in this setting. These results highlight GOAT as a practical path toward building robust open-source LLM agents capable of complex reasoning and tool use.

  • 6 authors
·
Oct 14, 2025

Improving Generalization in Task-oriented Dialogues with Workflows and Action Plans

Task-oriented dialogue is difficult in part because it involves understanding user intent, collecting information from the user, executing API calls, and generating helpful and fluent responses. However, for complex tasks one must also correctly do all of these things over multiple steps, and in a specific order. While large pre-trained language models can be fine-tuned end-to-end to create multi-step task-oriented dialogue agents that generate fluent text, our experiments confirm that this approach alone cannot reliably perform new multi-step tasks that are unseen during training. To address these limitations, we augment the dialogue contexts given to text2text transformers with known valid workflow names and action plans. Action plans consist of sequences of actions required to accomplish a task, and are encoded as simple sequences of keywords (e.g. verify-identity, pull-up-account, reset-password, etc.). We perform extensive experiments on the Action-Based Conversations Dataset (ABCD) with T5-small, base and large models, and show that such models: a) are able to more readily generalize to unseen workflows by following the provided plan, and b) are able to generalize to executing unseen actions if they are provided in the plan. In contrast, models are unable to fully accomplish new multi-step tasks when they are not provided action plan information, even when given new valid workflow names.

  • 5 authors
·
Jun 2, 2023

Conversation Routines: A Prompt Engineering Framework for Task-Oriented Dialog Systems

This study introduces Conversation Routines (CR), a structured prompt engineering framework for developing task-oriented dialog systems using Large Language Models (LLMs). While LLMs demonstrate remarkable natural language understanding capabilities, engineering them to reliably execute complex business workflows remains challenging. The proposed CR framework enables the development of Conversation Agentic Systems (CAS) through natural language specifications, embedding task-oriented logic within LLM prompts. This approach provides a systematic methodology for designing and implementing complex conversational workflows while maintaining behavioral consistency. We demonstrate the framework's effectiveness through two proof-of-concept implementations: a Train Ticket Booking System and an Interactive Troubleshooting Copilot. These case studies validate CR's capability to encode sophisticated behavioral patterns and decision logic while preserving natural conversational flexibility. Results show that CR enables domain experts to design conversational workflows in natural language while leveraging custom functions (tools) developed by software engineers, creating an efficient division of responsibilities where developers focus on core API implementation and domain experts handle conversation design. While the framework shows promise in accessibility and adaptability, we identify key challenges including computational overhead, non-deterministic behavior, and domain-specific logic optimization. Future research directions include CR evaluation methods based on prompt engineering frameworks driven by goal-oriented grading criteria, improving scalability for complex multi-agent interactions, and enhancing system robustness to address the identified limitations across diverse business applications.

  • 1 authors
·
Jan 20, 2025