Abstract
Researchers develop a method to analyze and visualize 3D representations from multi-view transformer residual connections, revealing insights into model behavior and correspondence refinement.
Multi-view transformers such as DUSt3R are revolutionizing 3D vision by solving 3D tasks in a feed-forward manner. However, contrary to previous optimization-based pipelines, the inner mechanisms of multi-view transformers are unclear. Their black-box nature makes further improvements beyond data scaling challenging and complicates usage in safety- and reliability-critical applications. Here, we present an approach for probing and visualizing 3D representations from the residual connections of the multi-view transformers' layers. In this manner, we investigate a variant of the DUSt3R model, shedding light on the development of its latent state across blocks, the role of the individual layers, and suggest how it differs from methods with stronger inductive biases of explicit global pose. Finally, we show that the investigated variant of DUSt3R estimates correspondences that are refined with reconstructed geometry. The code used for the analysis is available at https://github.com/JulienGaubil/und3rstand .
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper