File size: 5,087 Bytes
dbbd709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import json
import random

import torch
import torchaudio
import torchaudio.transforms as AT
import csv
import numpy as np
import librosa
import pandas as pd
import laion_clap
from model.CLAPSep_infer import LightningModule
from model.CLAPSep_decoder import HTSAT_Decoder
import argparse
import pytorch_lightning as pl
from helpers import utils as local_utils


class AudioCapsTest(torch.utils.data.Dataset):  # type: ignore

    def __init__(self, audioset_json, video2path_map_csv, sr=32000, resample_rate=48000):
        self.data_names = []
        self.data_labels = []
        video2path = {}
        for item in csv.reader(open(video2path_map_csv, 'r')):
            video2path[item[0]] = item[-1]
        
        video2labels = json.load(open(audioset_json, 'r'))
        for video, labels in video2labels.items():
            if video in video2path:
                video_path = video2path[video]
                self.data_names.append(video_path)
                self.data_labels.append(labels)

        if resample_rate is not None:
            self.resampler = AT.Resample(sr, resample_rate)
            self.sr = sr
            self.resample_rate = resample_rate
        else:
            self.sr = sr

    def __len__(self):
        return len(self.data_names)

    def load_wav(self, path):
        max_length = self.sr * 10
        wav = librosa.core.load(path, sr=self.sr)[0]
        if len(wav) > max_length:
            wav = wav[0:max_length]

        # pad audio to max length, 10s for AudioCaps
        if len(wav) < max_length:
            # audio = torch.nn.functional.pad(audio, (0, self.max_length - audio.size(1)), 'constant')
            wav = np.pad(wav, (0, max_length - len(wav)), 'constant')
        return wav

    def __getitem__(self, idx):
        tgt_name = self.data_names[idx]
        tgt_labels = self.data_labels[idx]

        mixed = torch.tensor(self.load_wav(tgt_name))

        return mixed, self.resampler(mixed), '|'.join(tgt_labels), tgt_name



def main(args):
    torch.set_float32_matmul_precision('highest')
    # Load dataset
    
    data_test = AudioCapsTest(audioset_json=args.audioset_json,
                              video2path_map_csv=args.video2path_map_csv,
                              sr=args.sample_rate,
                              resample_rate=48000)

    test_loader = torch.utils.data.DataLoader(data_test,
                                             batch_size=1,
                                             num_workers=1,
                                             pin_memory=True,
                                             shuffle=False)

    clap_model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base', device='cpu')
    clap_model.load_ckpt(args.clap_path)
    decoder = HTSAT_Decoder(**args.model)
    lightning_module = LightningModule(clap_model, decoder, lr=args.optim['lr'],
                                       use_lora=args.lora,
                                       rank=args.lora_rank,
                                       nfft=args.nfft)
    distributed_backend = "ddp"
    trainer = pl.Trainer(
        default_root_dir=os.path.join(args.exp_dir, 'checkpoint'),
        devices=args.gpu_ids if args.use_cuda else "auto",
        accelerator="gpu" if args.use_cuda else "cpu",
        benchmark=False,
        gradient_clip_val=5.0,
        precision='bf16-mixed',
        limit_train_batches=1.0,
        max_epochs=args.epochs,
        strategy=distributed_backend,
        logger=False
    )

    weights = torch.load(args.ckpt_path, map_location='cpu')
    lightning_module.load_state_dict(weights, strict=False)

    trainer.test(model=lightning_module, dataloaders=test_loader)

    # trainer.test(model=lightning_module, dataloaders=test_loader, ckpt_path=args.ckpt_path)



if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    # Data Params
    parser.add_argument('exp_dir', type=str,
                        default='experiments',
                        help="Path to save checkpoints and logs.")
    
    parser.add_argument('--sample_rate', type=int, default=16000)
    parser.add_argument('--ckpt_path', type=str, default='')
    parser.add_argument('--audioset_json', type=str, default='')
    parser.add_argument('--video2path_map_csv', type=str, default='')

    parser.add_argument('--use_cuda', dest='use_cuda', action='store_true',
                        help="Whether to use cuda")
    parser.add_argument('--gpu_ids', nargs='+', type=int, default=None,
                        help="List of GPU ids used for training. "
                             "Eg., --gpu_ids 2 4. All GPUs are used by default.")

    args = parser.parse_args()

    # Set the random seed for reproducible experiments
    pl.seed_everything(114514)
    # Set up checkpoints
    if not os.path.exists(args.exp_dir):
        os.makedirs(args.exp_dir)

    # Load model and training params
    params = local_utils.Params(os.path.join(args.exp_dir, 'config.json'))
    for k, v in params.__dict__.items():
        vars(args)[k] = v
    main(args)