Upload 4 files
Browse files- .gitattributes +1 -0
- Pixel-artist-train-loss-regression.png +0 -0
- Pixel-artist-train-loss.png +0 -0
- pixel-art-result.png +3 -0
- pixel_art_lo_ra_training_readme.md +143 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
pixel-art-result.png filter=lfs diff=lfs merge=lfs -text
|
Pixel-artist-train-loss-regression.png
ADDED
|
|
Pixel-artist-train-loss.png
ADDED
|
|
pixel-art-result.png
ADDED
|
|
Git LFS Details
|
pixel_art_lo_ra_training_readme.md
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
library_name: diffusers
|
| 4 |
+
pipeline_tag: text-to-image
|
| 5 |
+
license: apache-2.0
|
| 6 |
+
base_model: Tongyi-MAI/Z-Image-Turbo
|
| 7 |
+
tags:
|
| 8 |
+
- lora
|
| 9 |
+
- pixel-art
|
| 10 |
+
- diffusion
|
| 11 |
+
- text-to-image
|
| 12 |
+
- style-adaptation
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# 🎨 Pixel Art Character LoRA – Z-Image-Turbo
|
| 16 |
+
|
| 17 |
+
This repository hosts **LoRA adapter weights** fine-tuned on top of **Tongyi-MAI/Z-Image-Turbo** to improve **pixel art character generation** from text prompts.
|
| 18 |
+
|
| 19 |
+
The LoRA is optimized for prompts that start with or include:
|
| 20 |
+
|
| 21 |
+
> **"a pixel art character ..."**
|
| 22 |
+
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
## 🚀 Model Description
|
| 26 |
+
|
| 27 |
+
- **Base model**: `Tongyi-MAI/Z-Image-Turbo`
|
| 28 |
+
- **Fine-tuning method**: LoRA (Low-Rank Adaptation)
|
| 29 |
+
- **Task**: Text-to-image generation
|
| 30 |
+
- **Specialization**: Pixel art characters
|
| 31 |
+
- **Trainable parameters**: ~0.1% of base model
|
| 32 |
+
|
| 33 |
+
This model does **not** replace the base model. Instead, it injects lightweight LoRA adapters into the transformer layers.
|
| 34 |
+
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
## 🧠 Why Pixel Art?
|
| 38 |
+
|
| 39 |
+
Pixel art differs significantly from natural images:
|
| 40 |
+
- Sharp, discrete edges
|
| 41 |
+
- Limited color palettes
|
| 42 |
+
- Low-resolution spatial structure
|
| 43 |
+
|
| 44 |
+
Generic diffusion models often blur these characteristics. This LoRA improves:
|
| 45 |
+
- Structural sharpness
|
| 46 |
+
- Style consistency
|
| 47 |
+
- Prompt–image alignment for pixel art descriptions
|
| 48 |
+
|
| 49 |
+
---
|
| 50 |
+
|
| 51 |
+
## 🧩 How to Use
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
import torch
|
| 55 |
+
from diffusers import DiffusionPipeline
|
| 56 |
+
from peft import PeftModel
|
| 57 |
+
|
| 58 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 59 |
+
"Tongyi-MAI/Z-Image-Turbo",
|
| 60 |
+
torch_dtype=torch.bfloat16,
|
| 61 |
+
device_map="cuda"
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
pipe.transformer = PeftModel.from_pretrained(
|
| 65 |
+
pipe.transformer,
|
| 66 |
+
"<your-username>/<repo-name>"
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
prompt = "a pixel art character with square orange glasses, a chef hat-shaped head and a purple-colored body on a cool background"
|
| 70 |
+
|
| 71 |
+
image = pipe(prompt).images[0]
|
| 72 |
+
image.save("pixel_art.png")
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
---
|
| 76 |
+
|
| 77 |
+
## 🧪 Evaluation
|
| 78 |
+
|
| 79 |
+
### CLIPScore (Prompt–Image Alignment)
|
| 80 |
+
|
| 81 |
+
| Model | Normalized CLIPScore (mean ± std) |
|
| 82 |
+
|------|----------------------------------|
|
| 83 |
+
| Base Z-Image-Turbo | **7.834 ± 2.577** |
|
| 84 |
+
| + Pixel Art LoRA | **8.856 ± 2.473** |
|
| 85 |
+
|
| 86 |
+
➡️ **+1.02 CLIPScore improvement**, indicating stronger alignment with pixel-art-specific prompts.
|
| 87 |
+
|
| 88 |
+
---
|
| 89 |
+
|
| 90 |
+
## 📈 Training Details
|
| 91 |
+
|
| 92 |
+
- **Dataset**: `m1guelpf/nouns`
|
| 93 |
+
- **Image resolution**: 512×512
|
| 94 |
+
- **Epochs**: 1
|
| 95 |
+
- **Optimizer**: AdamW (`lr=1e-4`)
|
| 96 |
+
- **Precision**: bfloat16
|
| 97 |
+
- **Noise scheduler**: DDPM (300 steps)
|
| 98 |
+
|
| 99 |
+
### LoRA Configuration
|
| 100 |
+
```text
|
| 101 |
+
r = 16
|
| 102 |
+
lora_alpha = 32
|
| 103 |
+
lora_dropout = 0.05
|
| 104 |
+
target_modules = [to_q, to_k, to_v, to_out.0]
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
---
|
| 108 |
+
|
| 109 |
+
## 🖼️ Example Prompts
|
| 110 |
+
|
| 111 |
+
```text
|
| 112 |
+
a pixel art character with a wizard hat and glowing blue eyes
|
| 113 |
+
a pixel art character holding a sword and wearing red armor
|
| 114 |
+
a pixel art character with a robot body and green visor
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
---
|
| 118 |
+
|
| 119 |
+
## ⚠️ Limitations
|
| 120 |
+
|
| 121 |
+
- Optimized primarily for **pixel art characters**
|
| 122 |
+
- May not improve (or may slightly degrade) photorealistic prompts
|
| 123 |
+
- Trained on a relatively small dataset
|
| 124 |
+
|
| 125 |
+
---
|
| 126 |
+
|
| 127 |
+
## 🔮 Future Work
|
| 128 |
+
|
| 129 |
+
- Multi-epoch training with early stopping
|
| 130 |
+
- Broader pixel-art prompt coverage
|
| 131 |
+
- Palette-aware regularization
|
| 132 |
+
|
| 133 |
+
---
|
| 134 |
+
|
| 135 |
+
## 📜 License
|
| 136 |
+
|
| 137 |
+
This LoRA follows the license of the base model **Tongyi-MAI/Z-Image-Turbo**.
|
| 138 |
+
Please check the original repository for full license terms.
|
| 139 |
+
|
| 140 |
+
---
|
| 141 |
+
|
| 142 |
+
**Status**: Research / Experimental
|
| 143 |
+
|